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1 Introduction

One of the most common assumptions made within economics is that “alpha equals one-third”,

referring to the capital elasticity α in a Cobb-Douglas aggregate production function Y = KαL1−α.

This rule of thumb is derived from an observation that labor’s share of GDP is around two-thirds,

implying 1 − α ≈ 2/3, and hence that α ≈ 1/3. Not only has a recent literature (reviewed below)

documented that labor’s share of GDP has fallen in the last few decades, but as Hall (1988, 1990)

noted this rule of thumb only works if one assumes there are zero economic profits and hence

labor’s GDP share is equal to it’s elasticity. Moreover, the rule of thumb relies on the existence of

an aggregate production function and commonly assumes that α is constant over time.

In recent work Baqaee and Farhi (2019, 2020) show that one can calculate a meaningful elastic-

ity of GDP with respect to capital, d lnY/d lnK, without having to rely on any of the assumptions

embedded in the rule of thumb. In particular, their theory shows how to calculate the aggregate

elasticity from disaggregated units (e.g. industries) with rich input/output relationships and arbi-

trary unit-level distortions (e.g. markups). There is no need to assume an aggregate production

function exists, that profits are zero, or that the elasticity remains constant over time. Their

structure requires only market-clearing and cost-minimization.

In this paper I apply their theory to calculate the annual elasticity of GDP with respect to capital

and labor using disaggregated data on industries and their input-output relationships, allowing for

arbitrary markups at the industry level. I do this for the United States over the period 1948-2018,

and make a comparison across a set of 20 OECD countries for the period 2005-2015.

The theory in Baqaee and Farhi (2019, 2020) does not eliminate the well-known problem of

separating capital costs from economic profits in national accounts data. Because of this, what I

present here are plausible bounds on the capital and labor elasticities based on different assumptions

regarding capital costs. An upper bound for the capital elasticity is established by assuming zero

economic profits in all industries, such that all value-added not used for labor compensation is paid

to capital, as in the rule of thumb. This represents one extreme of the capital elasticity, and true

values are likely lower. A lower bound for the capital elasticity is found by assuming capital costs

are equal to depreciation, as industries pay at least this amount in capital costs.1 Bounds for the

labor elasticity are simply one minus the capital elasticity, so the no-profit assumption represents

a lower bound, and the depreciation assumption an upper bound, for the labor elasticity.

My baseline bounds for the capital elasticity in the U.S. can be seen in Figure 1. Between 1948

and 1995, the elasticity of GDP with respect to capital was in a range of 0.18-0.33, with 1/3 forming

an upper bound except for the 1970s. After 1995 the range shifted up, and from 1995-2018 the

elasticity with respect to capital was 0.21-0.39. The bounds for the labor elasticity are the mirror

1There are measurement issues with labor costs as well, in particular with the treatment of proprietors income
(Gollin, 2002; Gomme and Rupert, 2004; Elsby, Hobijn and Sahin, 2013). In practice the treatment of proprietors
income generates little variation in the estimated elasticities.
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image of these.

Because of the issues with measuring capital costs I cannot give a precise estimate of the capital

elasticity or labor elasticity. To the extent that there are markups present in the economy, the

actual capital elasticity must lie below the upper bound (and hence the labor elasticity above its

lower bound). Given recent evidence that markups were above one throughout the period 1948-2018

(Barkai, 2017; Edmond, Midrigan and Xu, 2018; De Loecker and Eeckhout, 2017; Gutiérrez and

Philippon, 2016; Basu, 2019) this implies that the capital elasticity was below one-third from 1948-

1995. After 1995, it becomes less clear. Higher markups in that period imply the capital elasticity

was below the upper bound, but at the same time the upper bound on the capital elasticity rose.

A value of one-third for the capital elasticity after 1995 is plausible, but in no way certain.

In addition to the bounding estimates, I explore two alternative ways of imputing the capital

costs that go into the elasticity calculations. The first alternative is based on a user cost formula

(Hall and Jorgenson, 1967) as in Barkai (2017) and Rognlie (2015). The elasticity estimates based

on user costs of capital fluctuate from 1948-2018 and show an upward drift, but for the most part

lie within the bounds. There are exceptions that imply periods of widespread negative economic

profits.2 As a second alternative, I use investment spending by industries to estimate their capital

costs. The capital elasticity based on these costs shows a smaller upward trend, and stays every-

where within the bounds. On average, the capital elasticity in this case is around 0.27 after 1960,

after beginning close to 0.21 in 1948.

The bounds and alternative estimates of the capital elasticity all show an upward trend to some

extent. I use an Olley and Pakes (1996) decomposition of the elasticity estimates to investigate the

source of this. On average, the capital elasticity across all industries drove the aggregate trend, and

changes in the composition of GDP by industry did not. There is evidence that larger industries

tend to have higher capital elasticities, but that relationship did not strengthen or weaken over

time.

Beyond these baseline results, the bounds on the elasticities depend on the scope of economic

activity included. In particular, if I narrow my focus to the private business sector (excluding

government and owner-occupied housing) then the estimated capital elasticity is lower than in the

baseline. The capital elasticity in the private business sector is 0.09-0.28 from 1948-1995, and

0.16-0.33 from 1995-2018, meaning it is always below one-third.

In a different exercise, I de-capitalize intellectual property (IP) from the national accounts

data as in Koh, Santaeulàlia-Llopis and Zheng (2020). This shifts down the estimates of the capital

elasticity as well. From 1948-1995 the capital elasticity is in the range 0.14-0.32, and 0.17-0.35 from

1995-2018. The adjustment is not as dramatic as with the private business sector, but capitalization

of IP does appear to account for several points of the overall increase in the capital elasticity over

2User cost based estimates of the capital elasticity in 1975-1989 often lie above the upper bound, implying negative
economic profits. This is driven by assumptions made regarding expected inflation in the user cost formula. I discuss
this in Section 4 when covering the results in more detail.

2



time.

The last main result of the paper is the comparison across 20 OECD countries from 2005-2015.

Here I find that the bounds in all countries overlap to a large extent. The level of the capital

elasticity across OECD countries is slightly higher (and the labor elasticity slightly lower) than in

my U.S. baseline, but this is is partly due to a different treatment of proprietors income in the

OECD due to data limitations. Assessing the U.S. under the same terms as the OECD, the overlap

in elasticities is strong.

This paper is a complement to the growing literature on the distribution of GDP across factors.3

It shares with that literature the same measurement issues surrounding proprietors income and

capital costs. Recent work on “factorless income” by Karabarbounis and Neiman (2019) is perhaps

the closest methodological analogue to this paper, in that those authors explore a range of plausible

approaches for dealing with this factorless income, although at an aggregate level. The bounds I

find for the elasticities are calculated either assuming that all factorless income is attributed to

capital (the zero profit bound) or that it all factorless income represents economic profits (the

depreciation cost bound).4

Despite the similarities in approach with the literature on factor shares of GDP, my findings

are distinct. Elasticities and factor shares are not identical due both to market power and the

input-output structure of the economy (Baqaee and Farhi, 2019, 2020). For this reason a factor’s

share of GDP does not necessarily inform us about the elasticity of GDP with respect to that

factor.

One of the uses of the elasticities I estimate is as an input into other macroeconomic studies. Any

research that is interested in how the supply of factors of production (e.g. savings/consumption de-

cisions, labor force participation, demographic change, international finance) will affect the economy

can use these elasticities without having to specify an entire production structure that incorporates

market power or rich input-output relationships. As Baqaee and Farhi (2019, 2020) show, these

elasticities already embed those features. As I can only provide reasonable bounds for the elastic-

ities, this provides a range of values that factor supply models could use to evaluate their results.

One caution is that the elasticities are first-order approximations, and so any dramatic changes in

factor supplies would have to account for second-order effects (Baqaee and Farhi, 2018).

As different application is to growth accounting, which depends on elasticity estimates as part

3Azmat, Manning and Reenen (2012); Bentolila and Saint-Paul (2003); Estrada and Valdeolivas (2014); Harri-
son (2005); Jaumotte and Tytell (2007); Guscina (2006); Karabarbounis and Neiman (2014); Dao et al. (2017) all
document a decline in labor’s share of GDP in the last few decades, across countries and industries. This was contem-
poraneous with a decline in capital’s share of GDP (Barkai, 2017; Rognlie, 2015). Incorporating the lessons in Gollin
(2002) regarding proprietors income does not appear to change that conclusion (Gomme and Rupert, 2004; Elsby,
Hobijn and Sahin, 2013). The decline in labor’s share has be tied to a fall in the price of new capital (Karabarbounis
and Neiman, 2014), but more recent research suggests it may be an artifact of capitalizing intellectual property (Koh,
Santaeulàlia-Llopis and Zheng, 2020) or the reporting of income (Smith et al., 2019).

4Factorless income as a share of value-added is larger in the industry-level data than in the aggregate because I
do not have information on some rental costs that are reported at the aggregate level.
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of the calculation of growth in total factor productivity (TFP). Typical accounting exercises by the

Bureau of Labor Statistics, as well as extensions to incorporate utilization rates (Kimball, Fernald

and Basu, 2006; Fernald, 2014), use the factor share of labor to find the labor elasticity and one

minus that share to find the capital elasticity, which is equivalent to the no-profits bound on the

elasticities. Based on my results, that overstates the capital elasticity and understates the labor

elasticity. In the last section of this paper I use the bounds on the elasticities to create bounds

for the growth of TFP in the U.S. from 1948-2018. The typical no-profit assumption represents

a lower bound for the growth rate of TFP, which averages about 1.3% per year 1948-2018. The

growth rate of TFP may have been up to 1.6% per year, depending on the choice of assumption

used to find the capital and labor elasticities. The level of TFP in 2018 may be up to 20% higher

than what the typical calculation finds.

The paper proceeds as follows. Section 2 presents the theoretical framework of Baqaee and Farhi

(2019, 2020) I use to calculate the elasticities, and Section 3 discusses the data sources and major

measurement issues. In Section 4 I present the baseline results on the bounds for the elasticities, as

well as the alternatives based on investment and user cost assumptions. Section 5 evaluates trends

in the elasticity estimates and their relationship to aggregate ratios of costs to GDP. In Section 6 I

explore how the elasticities change depending on the scope of economic activity. Section 7 compares

elasticities across the OECD, and Section 8 performs the growth accounting exercises. Section 9

concludes.

2 Theoretical background

What I present in this section is a simplified version of Baqaee and Farhi (2019, 2020) to highlight

only the theory that I use. Full proofs and deeper explanations can be found in their papers. In

the interest of space I use the abbreviation “BF” to refer to those authors in this section.

The economy consists of J industries, and each industry uses intermediate inputs from other

industries (and possibly itself), as well as the factors of production capital (K) and labor (L).

There can be any arbitrary number of factors of production, and I use capital and labor here only

for simplicity. BF’s theory is also “nestable” in that each industry could have an arbitrary number

of sub-industries or firms inside of it. I am speaking of industries here solely because this is the

level of detail I have available in the data.

The gross production function of any industry has constant returns with respect to intermediates

and the factors of production, but no other structure is imposed. Each industry is assumed to be

cost-minimizing, and each industry charges a price for their output that is a markup over the

marginal cost. For my purposes I will not need to know the price or the markup. It will be

sufficient to speak only about the costs faced by each industry.

Everything I present in this section holds for a given period t. To avoid needless notation, for
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the remainder of this section I will not use the t subscript.

To begin, for industry i let the costs of intermediate good purchased from industry j be denoted

as COSTij . The sum of costs accounted for by intermediate goods purchased by industry i from

all other J industries are then

COSTiM =
J∑
j=1

COSTij (1)

where the letter M is used to denote that this represents intermediate good costs only.

The capital costs faced by industry i will be denoted COSTiK , and the labor costs of the same

industry will be denoted COSTiL. Combined with the intermediate good summation above, this

means that total costs for industry i are

COSTi = COSTiM + COSTiK + COSTiL. (2)

Using these total costs one can calculate cost shares, which will be the most relevant piece of

information for calculating the aggregate elasticities in the end. For industry i the share of total

costs accounted for by intermediate purchases from industry j is defined as

λij =
COSTij
COSTi

. (3)

In a similar manner, for industry i the share of total costs accounted for by capital and labor,

respectively, are

λiK =
COSTiK
COSTi

(4)

λiL =
COSTiL
COSTi

. (5)

These cost shares can be used to build a modified input-output matrix that BF show can be

used to calculate the aggregate elasticities with respect to labor and capital. The insight from

BF is that one can treat the factors of production as “industries” that serve as an input to other

industries, but which purchase no intermediates from other industries. By including them in an

expanded I/O matrix they show how this can be used to solve for the elasticity of aggregate output

with respect to those factors.

Let Λ be a J + 2 by J + 2 matrix, which has J rows/columns from the individual industries,

and two additional rows/columns, one each for the capital and labor “industries”. Each row of

Λ is associated with an industry i, and the entries show the cost share of industry i coming from

the industry j represented in the columns. The cost shares of capital and labor for industry i are
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included as the final two columns of each row.

The last two rows of Λ capture the cost structure of the capital and labor, and they are “dummy”

rows in the sense that each entry is a zero. The capital and labor industries do not employ any

intermediate goods themselves, nor do they hire labor or capital.

It is easiest to understand the structure of Λ by examining it,

Λ =



λ11 λ12 · · · λ1J λ1K λ1L

λ21 λ22 · · · λ2J λ2K λ2L
...

...
. . .

...
...

...

λJ1 λJ2 · · · λJJ λJK λJL

0 0 · · · 0 0 0

0 0 · · · 0 0 0


(6)

The top-left JxJ block of this matrix is a standard input-output matrix. The final two columns

represent the capital and labor costs, respectively, for each industry. Note that the sum across a

row is equal to one for each of the first J rows, simply indicating that the matrix accounts for the

costs facing industry i. The final two rows of the matrix are the dummy rows for capital (second

to last) and labor (last row).

A calculation of aggregate elasticities requires one final piece of information. Let vaj be the

value-added of industry j, and V A =
∑J

j=1 vaj be total value-added. Then let the value-added

share of industry j be denoted by

γj =
vaj
V A

. (7)

Last, create a J + 2 by one vector Γ which has γj in row j for the first J rows, and zeroes in

the last two rows. Those last two rows represent the value-added shares of the capital and labor

industries, which are zero as those two factors are used solely as inputs by other industries. The

structure of Γ is

Γ′ =
[
γ1 γ2 · · · γJ 0 0

]
(8)

Given this information, one can calculate the vector of what BF call “cost-based Domar

weights”, E, for each industry.

E = Γ′(I − Λ)−1 (9)

where I is a J + 2 square identity matrix, and (I − Λ)−1 is the Leontief inverse matrix of the

expanded input-output matrix.

The structure of E is as follows,
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E =
[
ε1 ε2 · · · εJ εK εL

]
(10)

where ε1...εJ are the cost-based Domar weights for the regular industries, and εK and εL are the

cost-based Domar weights for capital and labor. What BF prove is that in this setting εK and εL

are the elasticity of aggregate output with respect to capital and labor, respectively, to a first-order

approximation. As this calculation holds for any period t, the elasticities are more properly denoted

εKt and εLt.

It is worth considering the intuition behind this result. In equation (9) the term (I − Λ)−1 is

the Leontief inverse. Let `ij denote the typical element of the Leontief inverse. `ij captures the

elasticity of output in industry i with respect to a productivity shock in industry j, accounting for

all the input-output linkages joining them.5

In the case of capital and labor, these “industries” have no final use and only serve as suppliers

of an input to other industries. A productivity shock to these factor “industries” is nothing more

than an increase in their supply. Hence the values of `iK and `iL show us the elasticity of output in

industry i with respect to the supply of capital or labor, respectively. This elasticity incorporates

not just the direct effect of more capital or labor on output in industry i (which is captured by the

cost shares λiK and λiL), but also incorporates the indirect effect of increased factor inputs on the

output of suppliers to industry i, on the output of suppliers to the suppliers of industry i, and so

on.

BF show that that `iK and `iL measure the elasticity of real output (as opposed to revenue)

with respect to capital and labor so long as the original entries in Λ are cost shares and not value-

added shares. This is the same insight from Hall (1988, 1990), Basu and Fernald (2002), and

Fernald and Neiman (2011) regarding the use of cost shares to measure elasticities, but applied in

a disaggregated manner to an economy with input-output linkages between industries.

The aggregate effect of an increase in capital or labor depends on the individual terms `iK and

`iL weighted by the value-added share of each industry. From the matrix multiplication in equation

(9) the aggregate elasticity with respect to each input can be expressed as

εKt =
∑
i∈J

vait`iKt (11)

εLt =
∑
i∈J

vait`iLt.

This breakdown of the elasticities will be useful later in decomposing the change in the elastic-

ities over time. Overall, the BF structure makes it possible to calculate the elasticity of aggregate

5Carvalho and Tahbaz-Salehi (2018) provide a very nice introduction to production networks and the interpretation
of the Leontief inverse.
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output with respect to aggregate capital or labor without an aggregate production function, with

rich input/output structures, and with arbitrary markups at the industry level.

3 National accounts data

The calculation of εKt and εLt is straightforward in theory, but not in practice. The well-known

issue is the disconnect between what is reported in the national accounts (e.g. gross operating

surplus) and what is necessary for the calculation (e.g. the cost of capital). This disconnect is why

in the following section I will build bounds for estimates of εKt (and εLt) based on different ways

of reconciling the national accounts with the needs of the calculation.

Prior to those main results I explain the three main U.S. data sources, set notation regarding

the national accounts, and explain the process I used to merge together various sources to create

industry-level data that spans 1948-2018 for the United States.

The first source of data are input/output tables. These are the Bureau of Economic Analysis

(BEA) Use Tables, before redefinitions, at producer value (U.S Bureau of Economic Analysis,

2020b). These yearly use tables provide the information on the costs of intermediates purchased by

industry i from industry j in year t, or COSTijt in the terminology from the prior section. They

also include data on the value-added of each industry i, which I denote as V ALU IOit , and where

the IO superscript refers to the source of this data.

Industries in the input/output tables are all classified according to the NAICS 2012 system, but

due to data limitations the BEA provides the tables at different levels of aggregation depending on

the year. For 1947-62 they report 46 industries, for 1963-1996 65 industries, and for 1997-2018 71

industries.

The second source of data are industry-level components of value-added from the BEA national

income and product accounts (U.S Bureau of Economic Analysis, 2020e,a). Specifically, I col-

lect measures of value-added, V ALUNIPAjt , labor compensation, COMPNIPAjt , proprietors income,

PROPNIPAjt , and taxes and subsidies, TAXNIPA
jt for each industry j in year t. The superscript

NIPA refers to the source of this data. Last, note that this data is sub-scripted by j (not i) to

indicate that the industrial classification of this NIPA data may be different than the industrial

classification in the IO table.

To impute labor compensation data (for example) from NIPA to the IO table, I use the following

equation,

COMP IOit = V ALU IOit ×
COMPNIPAjt

V ALUNIPAjt

. (12)

To implement this I need to match each industry i in the IO table to an appropriate industry j

in the NIPA data. Given that match, I use the ratio of compensation to value-added in the NIPA
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industry to impute the size of compensation in the IO industry. A similar expression is used for

both proprietors income and taxes and subsidies.

Table 9 documents the classification schemes used by different sources (IO, NIPA) for different

years. For 1997-2018 the NIPA data (U.S Bureau of Economic Analysis, 2020e) are classified

according to the NAICS 2012 system, and thus it is possible to match an industry i in the IO table

to the exact same industry j in the NIPA data. Further, the value-added reported in the two sources

are identical for these years, and hence the expression above devolves to COMP IOit = COMPNIPAjt

(and similar for the other components of value-added).

For 1948-1996, however, NIPA data are not reported according to the NAICS 2012 classification.

Industry-level data from the Historical Industry Accounts Data (U.S Bureau of Economic Analysis,

2020a) is classified by either SIC 1972 or SIC 1987 industries, depending on the year. I continue to

use the equation above to find compensation (and proprietors income and taxes) in industry i of

the IO table, but this now requires making assumptions about which industry j in the NIPA data

provides an appropriate match to industry i in the IO data in year t.

I rely on crosswalks between SIC 1972, SIC 1987, and NAICS 2012 classifications, and my own

judgment to make these matches. A straightforward example from 1960 would be using “Trans-

portation by air” (SIC 1972 code 45) as industry j from NIPA to match to “Air transportation”

(NAICS 2012 code 481) as industry i in the IO table.

The matching for a given year is not always one-for-one, and there are NIPA industries j (e.g.

SIC 1972 code 73 “Business services”) whose ratios are used for multiple industries i in the I/O table

(e.g. NAICS code 561 “Administration and support services”, NAICS code 55 “Management of

companies”, etc.). There are also situations where I have aggregated the data from NIPA industries

(e.g. SIC 1972 codes 63 “Insurance carriers” and 64 “Insurance agents, brokers, and service”) and

then matched this aggregate to an industry i in the IO table (e.g. NAICS code 524 “Insurance

carriers and related activities”).

Full details of the matching are available in the Appendix. I have experimented with a variety

of different reasonable choices for matching, and have not found any that change the results of the

paper in an appreciable way.6 The Appendix also shows that the estimates of εKt and εLt do not

have any distinct jumps in years when the source data change classification schemes (e.g. from

1996 to 1997).

The final data source I use are the Fixed Asset Accounts Tables of the BEA (U.S Bureau of

Economic Analysis, 2020d,f). These provide information on the size of the capital stock of type

k in industry j at years t, Kjkt, the amount of depreciation, DEPRjkt, and investment spending,

INVjkt. The three types of capital k reported are structures, equipment, and intellectual property.

This fixed asset data is reported according to the NAICS 2012 classification, and so can be matched

6Code and instructions are available on my website to the reader who wishes to experiment with different matching
assumptions between the NIPA and IO table sources.
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directly to the IO table industries.7

Once combined the dataset contains yearly information from 1948-2018, at the NAICS 2012

classification level, of industry-level information on intermediate costs, value-added, labor compen-

sation, proprietors income, taxes and subsidies, depreciation of capital (by type), investment in

capital (by type), and the stock of capital (by type).

4 Bounding the aggregate elasticities

As mentioned above, there is a disconnect in the presentation of data in the national accounts and

the requirements of the calculation of εKt and εLt from equation (9). In short, this is an issue of

how to split gross operating surplus into labor costs (part of proprietors income), capital costs,

and economic profits. As there is no clear correct answer for how to do this, my approach is to

construct several estimates of εKt and εLt based on different assumptions.

Two of these assumptions will form what I consider to be natural bounds on the size of εKt and

εLt. Assuming that there are zero economic profits in the economy will maximize the implied cost

of capital imputed from the national accounts data, and hence lead to an upper bound for εKt (and

a lower bound for εLt). On the other hand, we know that industries experienced the depreciation

of existing capital and their capital costs are at least this large. Using depreciation costs to impute

the cost of capital will therefore give a lower bound for εKt (and an upper bound for εLt).

Neither of these bounds are necessarily unbreakable. In the presence of negative economic profits

the implied cost of capital could be even higher than supposed with the zero-profit assumption.

Or if the user cost of capital were to become negative (perhaps due to high expected inflation)

it is possible capital costs could be lower than what is captured by depreciation. But alternative

assumptions regarding capital costs, such as a user cost calculation, do tend to fall within the

bounds I establish.

From the point forward I focus almost exclusively on discussing the capital elasticity, εKt. The

labor elasticity εLt is simply one minus the capital elasticity, so the implications for the labor

elasticity are straightforward to infer.

4.1 Labor costs, proprietors income, and taxes

The first step is to deal with the measurement of labor costs, COSTiL. I follow Gomme and Rupert

(2004) and assign a share of proprietors income and production taxes to labor equal to the ratio of

reported compensation to non-proprietors value-added:

7There are minor discrepancies between the NAICS classifications in the Fixed Asset Accounts and the IO tables.
These are straightforward to manage in that the fundamental classification system is the same. Details are in the
Appendix.
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COSTiLt = COMPit + (PROPit + TAXit)

(
COMPit

V ALUit − TAXit − PROPit

)
, (13)

where COMPit is reported labor compensation in industry i at time t, PROPit is proprietors

income, V ALUit is value-added, and TAXit is taxes and subsidies. Gomme and Rupert (2004) argue

that this provides a more accurate representation of the labor component of proprietors income

than using the number of self-employed workers and a measure of average wages, as proprietors

are likely to be high productivity (and hence high wage). This also apportions production taxes to

labor in the same manner.

In the Appendix I show variations on this assumption where I either assign all proprietors

income as labor costs (i.e. COSTiLt = COMPit + PROPit) or all proprietors income as capital

cost (i.e. COSTiLt = COMPit). In the former case, the results are quite similar to the baseline

using the Gomme and Rupert approximation. In the latter case the implied costs of capital are

higher, implying higher measures of εKt (and lower estimates of εLt). However, this seems an

unlikely case, given the widespread use of adjustments to proprietors income that assign much of it

as labor income. Hence I use the Gomme and Rupert adjustment in (13) as my baseline throughout

the paper.

4.2 Boundaries for capital costs

With the labor cost determined, it now remains to impute capital costs, COSTiKt, for each industry

in each year.

4.2.1 No profit assumption

The first assumption is that there are zero economic profits. This means that gross operating

surplus minus any adjustments for proprietors income and taxes represents a payment to capital.

To be specific, for this assumption I set

COSTNoProfiKt = V ALUit − COSTiLt. (14)

Given this cost of capital for an industry, I can then calculate the capital cost share, λNoProfiKt .

In addition, I can calculate the cost shares of various intermediates, λijt, and labor, λiLt, once those

capital costs are set.

With the cost shares in hand, it is straightforward to calculate εNoProfKt given the formula in (9).

As the aggregate capital elasticity is effectively a weighted average of the industry-specific capital

cost shares, by using the no-profit assumption εNoProfKt I have an upper bound on the aggregate

capital elasticity.8 The same calculation provides an estimate of εNoprofLt , but represents a lower

8Theoretically, this calculation is overkill. With zero profits Baqaee and Farhi (2019, 2020) show that the aggregate
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bound for that elasticity.

Figure 1 plots the estimated values of εNoProfKt over time for the United States as the heavy

black dashed line. In Figure 1 one can see that the no-profit capital elasticity begins at just over

0.32 in 1948 and rises with mild fluctuations to a value of 0.39 by 2018. This no-profit upper bound

for the capital elasticity tracks the value of 1/3 (with a mild dip in the 1970s) from 1948-1995. The

the value of 1/3 would only be appropriate in those years if one believed there were zero economic

profits in the economy. After 1995, there is shift up in the no-profit upper bound to about 0.38-

0.39, making the value of 1/3 appear more plausible. Table 2 provides summary statistics of the

estimated capital elasticities

4.2.2 Depreciation costs only

The second estimates of the aggregate elasticities are made using deprecation to impute the cost

of capital. Depreciation by itself misses costs associated with the on-going financing of the capital

stock by firms, but has the advantage of being reported on an industry-by-industry basis. We

know that industries face at least this depreciation cost. From that perspective, using depreciation

provides a plausible lower bound for capital costs.

In terms of the structure outlined above, I measure capital costs in industry i as follows

COSTDepriKt = DEPRit. (15)

As this point the logic is identical to the prior sub-section. These costs allow me to calculate cost

shares for each industry, and those cost shares are used in equation (9) to calculate the aggregate

capital elasticity, εDeprKt , and the aggregate labor elasticity, εDeprLt .

In Figure (1) the capital elasticity εDeprKt is plotted from 1948-2018 as the solid black line. As

expected, this series lies everywhere below the no-profit estimates. The estimated elasticity begins

at 0.16 in 1948 and finishes at 0.26 in 2018, for an increase of 0.11 that is very similar to the increase

in the no-profit upper bound.

From the figure it is also apparent that the gap between the no-profit upper bound and the

depreciation-based lower bound remains roughly constant. That gap averages 0.13, and is as low

as 0.091 (1980) and as high as 0.174 (1951). In the Figure that range is shaded in light gray to

indicate the plausible values for εKt in any given year. Note that this range is not a confidence

interval and nothing about it implies that the actual capital elasticity lies in the middle of the

range.

capital elasticity is equal to capital’s share of GDP.
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4.3 Alternative capital cost estimates

The prior sub-section showed the boundaries over time, and here I present two more estimates of

the capital elasticity that do not make sense as bounds, but provide information on the actual path

of the elasticity and whether those bounds are sensible.

4.3.1 Investment costs

Here I use observed investment spending by each industry as the measure of capital costs. One

way this imputation may be sensible is to consider an economy following a “Golden Rule”, where

all capital income is used to purchase capital goods. As capital income to one person represents a

capital cost to another, investment spending would measure capital costs.

An additional advantage of the investment cost assumption is that this data is measured directly

from industry level spending. Depreciation costs by themselves are estimated by the BEA based

on depreciation schedules that may not accurately reflect true industry experience. Arguably the

use of observed investment spending to measure capital costs may be the choice with the fewest

assumptions built in.

In this case the cost of capital is measured as follows,

COST InviKt = INVit. (16)

Once again, the logic at this point is standard. Using these costs I obtain cost shares for capital,

labor, and intermediates, and using (9) I can calculate εInvKt and εInvLt .

Figure (2) plots the estimated capital elasticity from 1948-2018 with the line marked with x’s,

as well as the original bounds. This estimate begins at 0.22 in 1948 and runs to 0.295 in 2018,

demonstrating a less dramatic increase that either the depreciation or no-profit bounds. Based on

investment costs, the capital elasticity ends up at the lower depreciation-based bound around the

time of the Great Recession in 2009 and remains close to that lower bound until 2018. This is

consistent with investment spending by industry that acts solely to replace depreciating capital in

that period.

Of note, the investment cost elasticity estimate remains everywhere inside the bounds set by the

deprecation-only and no-profit estimates. The relatively small increase over time in the investment

cost elasticity estimates reminds one that the true capital elasticity may well move between the

bounds over time and does not necessarily increase just because the bounds do. In addition, the

capital elasticity based on investment costs is everywhere below the value of 1/3.

4.3.2 User cost of capital

As a last alternative, I turn to the standard user cost of capital calculation of Hall and Jorgenson

(1967). This has been used extensively to estimate the cost of capital, including in recent work
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on labor and capital’s share of aggregate GDP (Barkai, 2017), with the downside of needing to

make several assumptions about the financing costs facing industries and expectations of inflation

of capital goods.

The calculation of the overall cost of capital for an industry i is more complex than the prior

assumptions. First, I allow for three types of capital goods - structures, equipment, and intellectual

property - which is available from the BEA capital stock data (U.S Bureau of Economic Analysis,

2020d,f). Each industry i has a stock of capital of each type j at time t, Kijt. Each industry i also

faces a rental rate for capital of type j at time t, Rijt, and these rental rates are allowed to vary

by industry.

Overall, the cost of capital to industry i at time t is

COSTUseriKt =
∑

j∈st,eq,ip
KijtRijt. (17)

The rental rate for each type of capital in a given industry is given by

Rijt = (Intit − E[πijt] + δijt)
1 − zjtτt

1 − τt
(18)

where Intit is the nominal interest cost of financing facing industry i at time t, explained below.

E[πijt] is the expected inflation in the price of capital type j for industry i at time t, and δijt is

the cost of depreciation. The term zjt is the depreciation allowance for taxation of capital type j

at time t, and τt is the effective corporate tax rate at time t.

In this baseline, the expected inflation rate E[πijt] for a given capital type j in industry i at

time t is just observed inflation rate in t, based on the price indices by capital type in the BEA

fixed asset accounts (U.S Bureau of Economic Analysis, 2020d,f). In the Appendix I show that

there are small changes to the results if I instead proxy expected inflation using forward-looking or

backward-looking inflation over different spans (1-year, 3-year, 5-year).

The nominal interest rate facing industry i at time t is calculated as a weighted average of

market interest rates for different types of financing (e.g. corporate bonds, equity, mortgages),

denoted by Intmt, and the weights vary by industry. Formally,

Intit =
∑
m

simtIntmt (19)

where simt is the share of financing of type m in industry j, and Intmt is the observed interest

rate on that type of financing.

While this is industry-specific, it primarily differentiates between government, housing, and the

private sector. Full details are available in the Appendix on sources for the shares and rates used.

A brief summary is that the federal government industry is assumed to be financed using 10-year

Treasury bonds and housing is assumed to be financed using 30-year mortgages. Private industries
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are financed using a combination of corporate AAA bonds, corporate Baa bonds, short-term loans,

and equity, with the shares (simt) determined from industry-level balance sheets provided by the

integrated macroeconomic accounts (U.S Bureau of Economic Analysis, 2020c).

Given the values of Intit I am able to calculate the rental rate of capital facing each industry i

for each capital type j, Rijt, and then the overall cost of capital for industry i at time t, COSTUseriKt .

With those costs of capital, I can then proceed in the same manner as before, and calculate the

elasticities εUserK and εUserL using equation (9).

In Figure (2) the series of εUserK is plotted from 1948-2018 marked by o’s. This is far more

variable over time than the bounds set by depreciation and no-profit assumptions, as well as more

variable than the estimates based on investment costs. However, the user cost of capital estimates

stay for the most part inside the bounds set by depreciation and no-profit.

There are notable exceptions. In 8 years (1950, 1973, 1974, 1977, 1978, 2004, 2005, and 2013)

the user cost of capital is below the bound set by the depreciation cost estimates. The observations

in the 1970s are due to very high inflation of all capital goods, which in the user cost calculation

results in very low rental rates and hence a low cost to capital. The 2004 and 2005 observations

are due to very high inflation in structures. 1950 and 2013 appear to be a combination of slightly

higher inflation in structures and low financing rates. Nevertheless, these deviations below the

bound of depreciation cost estimates are not large and appear to be short-lived.

On the other end, there is a continuous stretch from 1981 through 1992 where the user cost

estimates are above the upper bound set by the no-profit estimates. These are due to the relatively

high nominal rates on financing during this period and the lower values observed for inflation on all

capital goods. These deviations are not large after 1984. If the user cost estimates of the elasticities

are correct, then they would imply negative economic profits during this period. Alternatively, the

user cost calculations may not be accurately representing the cost of capital in this period.

Regardless, in 51 of the 71 years reported the estimate of εUserK falls between the bounds denoted

by the no-profit and depreciation costs estimates. Over time, the trend of the user cost estimates

appears to track the trend of the investment cost estimates, and both imply an elasticity that is

below 1/3 for much of this time period.

5 Trends and relationships to aggregate values

None of the four estimated series of εKt in Figure 2 are “right”. Without direct measurement of

the cost of capital faced by industries, and better information on the split of proprietors income,

any estimate of the aggregate elasticities is necessarily based on some assumptions. However, the

combination of the various estimates can be used as guidance regarding plausible values of εKt

(and εLt) over time. In addition, these estimates can be compared to “naive” estimates based on

economy-wide ratios to see how relevant the input/output relationships embedded in equation (2)
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may be.

5.1 Summary and trends

Table 2 summarizes the values of εKt in Panel A (“Baseline”) for the four different assumptions

regarding capital costs from the prior section. The mean, median, minimum, and maximum value

from 1948-2018 of the capital elasticity are displayed in the first four columns. As can be seen,

under the no-profit assumption the mean and median values of εKt are highest, and it has the

highest minimum value as well. In comparison, the depreciation assumption has the lowest mean

and median, and the lowest maximum value of all the assumptions used.

Based on the median values, this implies that εKt lies in a range of 0.220-0.334, and that the

typical assumption of εKt being equal to one-third is likely too big unless one is focused only on

the period from around 2000-2018.

There is a suggestion in Figure 2 that the range of plausible capital elasticities may have risen

over time. The final three columns of Table 2 provide more tangible estimates of that rise. For

each assumption on capital costs, I ran the following simple OLS regression

εKt = β0 + β1t+ ν, (20)

where t is the year and ν is a noise term. The estimate β̂1 was used to construct the fitted

increase in εKt over time for that assumption, ∆ε̂48−18 = 70× β̂1. This fitted change is reported in

column (5), the value of β̂1 in column (6), and the R-squared of the regression in column (7).

One can see that for all four assumptions regarding capital costs in Panel A of Table 2, the

fitted change was positive. For the no-profit assumption, the fitted value of the capital elasticity

rose by 0.069, while for the depreciation cost assumption it rose by 0.106. The investment cost

assumption had the smallest trend increase, or only 0.055.

None of this constitutes proof that the aggregate capital elasticity rose over time. It is quite

plausible that the capital elasticity stayed constant over time but the noisy nature of the data has

created an impression of trends. But if we accept the increase in the bounds as evidence of an

upward trend in εKt, note that this elasticity is almost certainly below 1/3 from 1948-1995, and

below 0.4 from 1995-2018. It is also plausible that the capital elasticity was around 1/4 the entire

time, given the evidence from the investment cost assumption.

5.2 Comparison to aggregate ratios

The estimates of the aggregate elasticity are built using industry-level data with input-output

relationships, but it is informative to compare that elasticity to aggregated data on capital costs

that ignores the industry input/output structure. Such aggregate data is what has been typically
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used to estimate these elasticities in the past, and has the advantage of being much more readily

available.

Using the notation developed above, define aggregate capital costs as a share of all factor costs

(labor plus capital), sCostKt , as follows,

sCostKt =

∑J
j=1COSTjKt∑J

j=1COSTjKt + COSTjLt
. (21)

A second aggregate ratio to consider is aggregate capital costs as a share of value-added, sV AKt ,

defined as

sV AKt =

∑J
j=1COSTjKt∑J

j=1 vajt
. (22)

Note that both of these aggregate ratios still depend on the choice of assumption regarding

capital costs.

Table 3 provides summary statistics for both sCostKt and sV AKt in Panel A. Under the no-profit

assumption in the first row, columns (1)-(4) the mean value of sCostKt is 0.337, and ranges from a

minimum of 0.291 to a maximum of 0.391 between 1948 and 2018. In columns (5)-(8) the summary

statistics for sV AKt are identical for the no-profit assumption, by construction. With zero economic

profits the denominators of the two ratios are identical.

Moreover, note that these summary statistics are identical to the estimates of εKt under the no-

profit assumption in Panel A of Table 2. This is again by construction. As Baqaee and Farhi (2019,

2020) derive, with zero economic profits the elasticity is equal to capital’s share of value-added,

even in the presence of input/output relationships.

Reading down the rows in Panel A of Table 3, however, there are distinctions between sCostKt

and sV AKt in the different scenarios, and the summary statistics of these ratios do not match the

summary statistics of εKt from Table 2. The differences in the aggregate ratios arise because of

the presence of economic profits, which is why the value-added ratio sV AKt is everywhere less than

or equal to the cost ratio sCostKt . The difference of the cost ratio from the elasticity arises because

of those profits and the input/output nature of the calculations.

That said, it turns out that the aggregate cost ratios are a decent approximation of the capital

elasticity under different capital cost assumptions. Figure 3 plots the estimated values of εKt for

all years under three assumptions regarding capital costs against the corresponding ratio sCostKt for

that assumption in the same year. The no-profit assumption is excluded because the elasticity and

ratio are identical there by construction.

What can be seen is that the elasticity estimates lie generally above the corresponding ratios,

with the 45-degree line denoted by dashes. The differences are distinct, but not very large in

practice. The average difference between elasticity and ratio (εKt−sCostKt ) using the investment cost
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assumption is 0.014, 0.23 using the user cost assumption, and 0.034 using the depreciation cost

assumption.

These differences reflect the influence of input/output relationships in raising the implied elas-

ticity with respect to capital over and above what the simple ratio would suggest. In other words,

industries with large capital elasticities tend to be supplies of other industries, which increase the

aggregate elasticity of the economy with respect to capital. However, the size of the differences

suggests that one could derive a reasonable approximation from the ratio alone, which may be

useful in the absence of an input/output table. Knowing the downward bias of the ratio relative to

the elasticity would be informative in such a situation.

5.3 Accounting for change

The bounds on εKt rose over time. By themselves, these changes in the bounds do not necessarily

imply that the actual values of εKt and εLt changed. But it seems worth exploring what drove the

changes in the bounds, as they imply shifts in the aggregate elasticities were plausible.

To account for the change in bounds, return to equation (12) and the expression showing how

εKt is a weighted sum of entries from the Leontief inverse,

εKt =

J∑
j=1

vait`iKt.

To track the changes in εKt over time I perform an Olley and Pakes (1996) decomposition on

this summation, yielding

εKt = `Kt +

J∑
j=1

(vait − vat)(`iKt − `Kt), (23)

where `Kt is the unweighted mean of the Leontief elements for capital. This mean industry-level

elasticity shows how sensitive industries are to capital, ignoring their share of GDP. Tracking this

over time will indicate whether industries in general were becoming more or less sensitive to the

use of capital.

The summation term above is the “covariance” of value-added shares and Leontief elements.

When positive, it indicates that industries that are more sensitive to capital (e.g. have `iKt above

average) also tend to be large in value-added terms. When negative, it indicates that industries

sensitive to capital are relatively small. Tracking this covariance term over time will show whether

capital-sensitive industries were becoming larger or smaller.

Figure 4 plots the values of εKt and `Kt for both the upper and lower bounds of the elasticity,

which are determined by the no-profit and depreciation cost assumptions on capital costs. The

covariance is not plotted separately but can be inferred from examining the Figure, as it is the gap
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between plotted series.

For the no-profit upper bound, it is apparent that the mean industry-level elasticity, `Kt, drove

the drift up over time. The gap between εKt and `Kt is accounted for by the covariance term in

(23), which is positive but small in absolute size throughout. The upper bound on the aggregate

elasticity rose over time because, on average, most industries were getting more sensitive to capital.

This story is repeated with the depreciation cost lower bound. Again the mean industry-

level elasticity, `Kt, lies everywhere below the aggregate elasticity, εKt, which implies again a small

positive covariance term. The drift upward is due to higher mean capital elasticities at the industry

level, and not due to changes in the covariance between value-added shares and industry elasticities.

6 The composition of capital and output

Up to this point I have been working with data that covers all industries, including those for which

value-added and capital costs may be particularly hard to measure correctly (e.g. government,

owner-occupied housing). The baseline also takes as given the capitalization of intellectual property

in the national accounts, which is a recent adjustment that impacts value-added and capital stocks

within industries.

6.1 Private business sector

To see the influence of the inclusion of government (both general government and government en-

terprises at federal and state/local levels) and owner-occupied housing on the aggregate elasticities,

I remove them both from the calculation of εKt and εLt. In practice, this means deleting their rows

and columns from the IO matrix Λ as well as their entries from the vector of value-added shares in

Γ.9 This makes the coverage of the calculation equivalent to the “Private business sector” coverage

that the BLS uses.

Figure 5 plots the estimated value of the capital elasticity bounds (the no-profit and depreciation

cost assumptions) for the private business sector as dark black lines, and the plausible range for the

capital elasticity is shaded in dark gray. For comparison, the original bounds using all industries

are plotted using the dashed lines, and that range is shaded in light gray.

As can be seen, the range of the capital elasticity for the private business sector lies everywhere

lower than the range for the aggregate economy. In general, both bounds are shifted down by

approximately 0.05. Notably, the capital elasticity for the private business sector lies definitively

9In practice there are several industries that are deleted, depending on the year. NAICS includes entries for federal
general government (defense), federal general government (non-defense), federal government enterprises, state and
local general government, and state and local government enterprises. Prior to 1997, the federal general government
categories are combined into a single industry. With respect to housing, both housing and other real estate are
excluded. Prior to 1997, those two industries were aggregated into a single real estate industry.
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under 1/3 throughout the period, and only during the years 2010-2018 does the upper bound reach

that value. The naive value is too high if one is considering just private business sector activity.

In Table 2, Panel B, summary statistics are reported for the private business sector alone.

Comparing Panel B to Panel A, the downward shift of about 0.05 in the aggregate capital elasticity

shows up regardless of how capital costs are calculated. This has the implication that the aggregate

labor elasticity is estimated to be higher by about 0.05 in the private business sector.

This shift in elasticities is driven almost entirely by the exclusion of housing. In the Appendix I

show results that exclude housing and government separately, and one can see that it is only after

excluding housing that this significant drop in εKt takes place.

Mechanically, the lower elasticity in the private business sector comes from the fact that the

housing industry has a very high capital cost share under any set of assumptions. The average

capital cost share is 0.94 under the no-profit assumption, 0.89 under the investment cost assump-

tion, 0.83 under the user cost assumption, and 0.80 under the depreciation-only assumption. Full

statistics on these shares are available in the Appendix. The estimates of εKt are weighted averages

of cost shares across different industries (with the weights depending on input-output linkages), so

the exclusion of owner-occupied housing lowers εKt for the private business sector.

If we restrict ourselves to the private business sector of the economy then the likely size of

εKt is well below one-third, and even below 0.30. Nevertheless from Table 2, Panel B, columns

(5)-(7) one can see that the elasticity under all assumptions did rise over time, and in amounts

very similar to the rise in the elasticity when the entire economy is considered in Panel A. The

private business sector has a similar trajectory of εKt over time, but is shifted down compared to

the overall economy.

6.2 De-capitalizing intellectual property

A related issue concerns the inclusion of intellectual property as a capital stock in the national

accounts. As Koh, Santaeulàlia-Llopis and Zheng (2020) showed, the revision to the national

accounts to capitalize intellectual property, begun by the BEA with their 11th revision in 1999, can

explain essentially all of the reported decline in labor’s share of GDP. While I am concerned here

with the elasticity of GDP with respect to capital (and labor), the same features of the national

accounts that Koh, Santaeulàlia-Llopis and Zheng (2020) identified may be relevant here.

In particular, in capitalizing intellectual property (as opposed to treating it as an expense), the

BEA revised up the value-added of each industry by an amount equal to the sum of own-account

and purchased intellectual property. This also revised gross operating surplus by incorporating own-

account intellectual property, and revised total depreciation to include that of intellectual property.

Following Koh, Santaeulàlia-Llopis and Zheng (2020), I reverse these modifications to strip out the

capitalization of intellectual property and then estimate εKt. Details of the calculations required

are in the Appendix.
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De-capitalizing IP changes the estimated aggregate elasticities. Figure 6 plots in the dark lines

the upper (no-profit) and lower (depreciation-only) bounds for the elasticity εKt when intellectual

property is de-capitalized from the national accounts. For comparison purposes, the dashed lines

plot the upper (no-profit) and lower (depreciation-only) bounds under the baseline situation where

IP is considered a capital good.

As can be seen, there is a distinct shift down in the range of plausible εKt values when IP is de-

capitalized. The upper bound is well below 1/3 throughout most of the time period, and only rises

above it in 2005-2018, and even then the difference is small. There is a similar story for the lower

bound, which starts similar to the baseline in 1948, but remains much lower through 2018. Figure

6 indicates that an important part of the apparent rise in εKt over time was the capitalization of

IP.

In Table 2, Panel C, I show the summary statistics when IP is de-capitalized. The mean

and median values are lower under all assumptions compared to the baseline, by about 0.02-0.03.

Perhaps more interesting is columns (5)-(7), which show that the implied rise in εKt over time was

more muted when IP is de-capitalized, but it does not disappear completely.

The mitigation of the upward trend is consistent with the findings of Koh, Santaeulàlia-Llopis

and Zheng (2020) on the mitigation of the downward trend in labor’s share of GDP. In both cases

de-capitalizing IP leaves the size of labor compensation the same, but lowers the size of value-added

in each industry. In my case, this implies that there is less value-added “left over” to be attributed

to capital costs, capital cost shares are lower across industries, and hence the size of εKt is lower.

Panel D of Table 2 shows summary statistics when IP is de-capitalized in the private business

sector. The combined effect is to push the no-profit upper bound down lower, to an average of

0.258 for εKt, with a maximum of 0.297, below 1/3. The depreciation lower bound averages only

0.120, with a maximum of 0.165. With this narrow definition of economic output and excluding IP

capital, it is plausible that the capital elasticity was below 0.3 on a regular basis.

7 Comparison with the OECD

Given the time series for the U.S., a natural question is whether the values of εKt (and of εLt)

are of similar sizes in other countries. I use data from the OECD STAN database (Horvát and

Webb, 2020) and input/output tables (OECD, 2020) to calculate values of εKt for a set of 20 OECD

countries in the period 2005-2015. The limited time frame compared to the baseline U.S. case is

due to lack of full data for OECD countries prior to 2005. The OECD dataset does include the

U.S., however, and so this will provide a separate point of comparison to the baseline estimates.

There are other limitations to the OECD data. First, there is no information regarding pro-

prietors income, and hence there is no way to apply the Gomme and Rupert (2004) adjustment to

recover total labor compensation. The OECD does report total compensation, total employees, and
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the total number of self-employed workers. Using that information I create compensation measures

for industry i in country m in year t as follows,

COSTmiLt = COMPmit + SELFmit

(
COMPmit
EMPLmit

)
. (24)

COMPmit is reported labor compensation, SELFmit is the number of self-employed workers,

and EMPLmit is the number of regular workers. This adjustment thus uses the average wage

to value the labor compensation of self-employed workers. As Gomme and Rupert (2004) point

out, this likely understates labor compensation to the extent that self-employed workers are owner-

operators who likely bring more skill or human capital to the firm. This implies that the estimates

of εmLt will likely be understated, and the estimates of εmKt overstated for the OECD countries.

The second limitation on the OECD data is a lack of information on the financial structure of

liabilities by industry in different countries, preventing me from calculating a user cost of capital

measure comparable to what I used for the U.S.. In the absence of this information, I only make

comparisons using the no-profit, depreciation cost, and investment cost assumptions. For the U.S.

I calculate εmKt using the OECD data and method for handling self-employment so that it is

comparable to other OECD countries. I will also compare this U.S. calculation to the one done

previously using BEA data.

Caveats aside, the process for calculation is again using equation (9). Table 4 provides the mean

value of εmKt from 2005-2015 for each country, and the absolute change from 2005 to 2015 in each

country, for the three available assumptions regarding capital costs. In addition, two rows at the

end of the table show the mean over all OECD countries from 2005-2015, as well as the median

across all OECD countries from 2005-2015. The final row of the table reports the values for the

U.S. made using the baseline data from the BEA discussed in the prior sections of the paper, for

comparison.

The values for the U.S. from the two sources deviate to some extent. The depreciation cost

lower bound is 0.266 using the OECD, and 0.256 using the baseline BEA data, which are quite

close. The no-profit upper bound is 0.431 using the OECD, and only 0.381 using the baseline BEA

data. The difference in the upper bound is driven by the different treatment of proprietors income.

This suggests that the OECD estimates for the upper bound may be skewed upwards by imputing

self-employed labor income using the average wage, rather than the Gomme and Rupert (2004)

adjustment for proprietors income. By understating labor costs this overstates capital costs in the

no-profit scenario, leading to higher values for the capital elasticity.

Unfortunately there is no information in the OECD database for investment by industry in the

U.S., so there is no way to make a comparison under this assumption about capital costs.

Comparing the U.S. OECD estimates to the rest of the OECD, the depreciation lower bounds

are quite similar. The OECD mean lower bound is 0.280 in this period, and the median is 0.276.
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For the no-profit upper bound, the OECD values are also similar to the U.S. value from the OECD:

a mean of 0.441 for the OECD compared to 0.431 for the United States. Given the apparent upward

bias in the no-profit upper bound noted for the U.S., it seems likely the upper bounds for all OECD

countries are overstated to some extent.

That said, one can see variation across the OECD in the range of εmKt. The United Kingdom

has a lower bound of only 0.221, and an upper bound of 0.359. At the other end of the scale, the

Czech Republic has a lower bound capital elasticity of 0.322 and an upper bound of 0.503. But

across the 20 OECD countries, the bounds on the values of εmKt are not disjointed, in the sense

that every country’s range of plausible values overlaps with every other country’s.

One can see this is Figure 7, which shows the ranges of all 20 countries. The U.S. values are

shown at the top, with o’s representing the estimated elasticity in each year using the depreciation-

only assumption (the lower bound), and the x’s showing the estimated elasticity in each year under

the non-profit assumption (the upper bound). The dashed vertical lines are the median lower and

upper bound values for the U.S. between 2005-2015. Below the U.S. each country is shown in

reverse alphabetical order, with the same interpretation of the symbols. While the ranges for some

countries extend above 0.50, or as low as 0.20 for others, one can see that for the most part all the

ranges overlap in the area between 0.30 and 0.40.

These estimates suggest some consistency across the OECD in the range of εmKt, but it should

be noted that the true value of εmKt could differ across countries due to differences in market

power or the true costs of capital. All this data suggests is that the plausible values are similar.

The OECD data is calculated over the whole economy, including government and housing, and

incorporates IP capital. Similar changes to those seen in the U.S. data when those industries or

capital type are excluded seem likely. All that being said, the cost structures of industries appear

to be similar to one another across countries in the OECD, such that the range of εmKt is also

similar.

8 An application to growth accounting

Returning the U.S. setting, the bounds I have found for the capital and labor elasticities are relevant

to the calculation of total factor productivity (TFP) growth. In particular, common series on TFP

growth assume that the labor elasticity can be estimated from labor’s share of GDP, and that

capital’s elasticity is one minus the labor elasticity. These elasticities correspond to the “no-profit”

scenario I use, and are only applicable if the economy has zero markups or market power. These

series thus provide a bound on TFP over time, but may not reflect actual TFP growth. Here I

show TFP growth over time when different assumptions about the elasticities are used.

The baseline calculation I am working with is as follows,
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d lnTFP st = d lnYt − εsKtd lnKt − εsLtd lnLt. (25)

The difference in log TFP at time t, d lnTFP st , depends on the difference in log output, d lnYt

minus the effects that are accounted for by capital growth, d lnKt, and growth in labor inputs,

d lnLt. The data on output and inputs I take directly from the BLS. Growth in the labor input is

made up of two parts, the growth rate of hours and the growth rate of labor quality, the latter of

which is imputed by the BLS from the composition of the workforce and relative wages. Capital

growth is measured as the growth in capital services, also imputed by the BLS.10

The superscript s in equation (25) refers to the assumption used to calculate the elasticities εsKt
and εsLt. I calculate TFP growth for four different values of s corresponding to series I described

above in Section 4: no-profit, depreciation only, investment costs, and user costs. By construction,

the series of TFP growth calculated using the values of elasticities under the no-profit assumption

matches the standard BLS exactly (with minor rounding errors). The other assumptions s yield

different series for d lnTFP st .

It is not obvious ex ante whether the growth rates of TFP will be higher or lower that the BLS

baseline when I used different assumptions for the elasticities. Overall, the other assumptions give

lower values for the capital elasticity, and higher values for the labor elasticity. Whether this leads

to higher or lower estimates of TFP growth depends on the relative size of capital growth and labor

growth. To the extent that capital growth is higher than labor growth, this will tend to lead to

higher estimates of d lnTFP st as the elasticities will reduce the implied role of input growth.

Figure 8 shows the results of the exercise. I’ve converted the growth rates of TFP into a

level series with 1947 equal to 100, to aid in visualization. What becomes clear is that the no-

profit assumption behind the BLS elasticities gives a lower bound to the level of TFP over time.

Elasticities based on depreciation costs yield an upper bound to the TFP series, while the investment

cost and user cost elasticities give series lying in between, consistent with the fact that those

elasticities also tend to lie in between the bounds.

In terms of implication, it is likely that the standard BLS numbers are under-stating the size

of TFP over time, and therefore the absolute growth rate of TFP. By 2018 under the BLS no-

profit assumption TFP is 2.5 times higher than in 1947, but using the depreciation cost elasticities

TFP is 3 times higher, 20% higher than the BLS baseline estimate. TFP growth under the BLS

baseline average 1.29% per year, but could be as high as 1.58% per year given the depreciation only

elasticities.

Table 5 shows the average annual growth rate of TFP, by decade, under different scenarios.

10To impute capital service the BLS allocates total capital costs across different types of capital. An implicit
assumption in that imputation is that total capital costs are equal to all non-labor value-added, or that there are no
profits. I take the BLS capital numbers as given, and only focus on the effect of changing the elasticities in equation
(25).
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Column (1) uses the BLS no-profit scenario, and shows the standard pattern of TFP growth over

time (e.g. slowdown in the 2000s), and the overall average growth rate of 1.29% for 1948-2018. In

columns (2)-(4) are the average annual growth rates calculated under the other scenarios for capital

costs, and shows that these imply higher growth rates across all decades, but that the variation

between decades is preserved. There is still a slowdown starting in the mid-1970s to the mid-1980s,

followed by rapid growth in the 1990s, and then a slowdown in growth starting in the early 2000s.

The magnitudes of these changes are different using different assumptions on the elasticities, but

that does not overturn the general story regarding TFP growth.

9 Conclusion

The elasticities of GDP with respect to capital and labor are central parameters to almost any

model of the economy. Values for these elasticities have traditionally been derived from factor

share information, leading to the rule of thumb that the capital elasticity is equal to one-third and

the labor elasticity two-thirds.

That rule of thumb requires several strong assumptions, including the existence of an aggregate

production function and zero economic profits. In this paper I applied the theory of Baqaee and

Farhi (2019, 2020) to the calculation of these elasticities, which eliminates those strong assumptions,

and allows me to estimate the aggregate elasticities using industry-level data on costs of capital

and labor.

Because of the standard problem of finding capital costs from national accounts data, I create

bounds on the elasticities based on different assumptions. An upper bound for the capital elasticity

is created by assuming there are zero economic profits, and a lower bound by assuming that

depreciation is the only cost of capital. Those bounds indicate a value of the capital elasticity

that was 0.18-0.33 from 1948-1995 in the U.S., and 0.21-0.39 from 1995-2018. If I limit the scope of

the economy to the private business sector, or de-capitalize intellectual property from the national

accounts, those bounds are shifted down by between 0.03-0.07 in each year. Comparing the U.S.

to the OECD, there is substantial overlap in the estimates of the capital elasticity.

The results suggest that the rule of thumb “alpha equal one-third” is likely to overstate the size

of the capital elasticity, at least for much of the time frame considered. This has consequences for

things such as growth accounting. By using the bounds I calculate for the capital elasticity, I show

that common BLS estimates of the TFP growth rate and level are likely understated.

While the overall results would suggest that the rule of thumb overstates the capital elasticity

(and understates the labor elasticity), it is not wildly inaccurate. Going forward, papers that require

an estimate of the capital and labor elasticities could use the boundaries I have calculated as part

of robustness and sensitivity checks to confirm their results are not due to the specific elasticities

chosen. Also valuable is that these aggregate elasticities that I have calculated are summary
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measures for economies with arbitrary amounts of market power and input/output relationships

(Baqaee and Farhi, 2019, 2020). They can be applied in different models as a “reduced form”

way of introducing the production side of the economy, without having to specify it in detail.

More generally, studies relying on aggregate elasticities as part of calibration or imputations of

productivity would be advised to consider the range of values estimated here to ensure they are

not basing their findings on extreme values.
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Figure 1: Boundaries for the aggregate capital elasticity, εKt, U.S. 1948-2018
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Notes: The estimate of the aggregate capital elasticity, εK , is made using equation (9) under various assumptions

explained in detail in the text. The no-profit assumption assumes capital costs equal all value-added minus labor

compensation. The depreciation-only assumption assumes capital costs equal the value of depreciation reported. The

primary data source for all estimates is the Bureau of Economic Analysis, with input-output tables, capital stocks

by industry, compensation by industry, and value-added by industry using different industrial classifications merged

according to a methodology described in the Appendix.
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Figure 2: Alternative estimates of the aggregate capital elasticity, εKt, U.S. 1948-2018
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Notes: The estimate of the aggregate capital elasticity, εK , is made using equation (9) under various assumptions

explained in the text. The no-profit and depreciation-only bounds are the same as in Figure 1. The investment

cost assumption assumes capital costs equal reported investment, and the user cost assumption assumes capital costs

are determined by a standard user cost formula from Hall and Jorgenson (1967). The primary data source for all

estimates is the Bureau of Economic Analysis, with input-output tables, capital stocks by industry, compensation by

industry, and value-added by industry using different industrial classifications merged according to a methodology

described in the Appendix. Additional information on nominal rates of return and inflations rates used for the user

cost calculation is from the Federal Reserve.

31



Figure 3: Comparison of estimated elasticity, εKt, to cost ratio, sCostKt
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Notes: Estimate of the aggregate capital elasticity, εKt, are plotted on the y-axis and made using equation (9) under

various assumptions explained in the text and denoted in the legend. The cost ratio of capital, sCost
Kt , is calculated as

in equation (21) under the same assumptions. The position of the εKt estimates above the 45-degree line indicates

that the input/output relationships matter to some degree, and that industries with high capital elasticities tend to

be suppliers to other industries, pulling up the aggregate elasticity.
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Figure 4: Aggregate capital elasticity and mean industry-level capital elasticity, U.S. 1948-2018
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Notes: The estimates of the aggregate capital elasticity (black lines), εKt, are made using equation (9) in the text.
The two estimates differ in the assumption regarding capital costs - depreciation costs only or a no-profit assumption
- as explained in the text. The mean industry-level capital elasticity (gray lines) is the term `Kt from equation (23)
. It is the raw average of the elements `iKt from the Leontief inverse found in equation (9). The difference between
the aggregate elasticity and the mean industry-level elasticity is due to the covariance of the value-added share of an
industry and the industry-level elasticity. In both the depreciation and no-profit case, the covariances are positive
as the aggregate elasticity lies above the mean industry-level elasticity. The figure shows the trend upward in the
elasticity was due to industries, on average, having higher capital elasticities over time, and not due to a change in
the covariance of industry size (in value-added terms) and the size of the elasticity.
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Figure 5: Estimates of aggregate capital elasticity, private business sector, U.S. 1948-2018
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Notes: The estimate of the aggregate capital elasticity, εKt, is made using equation (9) in the text. Dashed lines refer

to the upper (no-profit) and lower (depreciation-only) bounds of εKt calculated including all industries. The dark

lines refer to the upper (no-profit) and lower (depreciation-only) bounds of εKt calculated for the private business

sector (e.g. excluding owner-occupied housing and government).
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Figure 6: Estimates of aggregate capital elasticity, de-capitalizing IP, U.S. 1948-2018
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Notes: The estimate of the aggregate capital elasticity, εKt, is made using equation (9) in the text. Dashed lines

refer to the baseline upper (no-profit) and lower (depreciation-only) bounds of εKt calculated with IP included as a

capital good. The dark lines refer to the upper (no-profit) and lower (depreciation-only) bounds of εKt calculated

when IP is de-capitalized from the national accounts as described in the text.
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Figure 7: Estimates of aggregate capital elasticity, OECD countries, 2005-2015
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the sample under two assumptions: no profits (x’s) and depreciation costs (o’s) only. The U.S. estimates were made

using OECD data and assumptions, as described in the text. The dashed lines are medians of the U.S. estimates

under depreciation-only and no-profit assumptions.
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Figure 8: TFP levels under different elasticity assumptions, U.S. 1948-2018
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Notes: The level of TFP is calculated using equation (25) which follows the methodology of the BLS. Data on

output, capital services, and labor inputs are from Fernald (2014). The four series plotted differ in the elasticities

with respect to capital and labor used in the calculation. Those four series correspond to the four different methods

used in this paper to calculate the elasticities, and are based on different assumptions regarding how to calculate

the cost of capital by industry. My calculations exclude government and owner-occupied housing, to match the BLS

calculations for the private business sector. The “no-profit” elasticities I calculate match the elasticities used by the

BLS, and so that series matches the BLS multi-factor productivity numbers with only minor rounding errors.
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Table 1: Industrial classification of data by year

Value-added
Series I/O tables components Capital stock

1948-62 NAICS 2012 (47 ind) SIC 1972 BEA/NAICS 2012
1963-86 NAICS 2012 (65 ind) SIC 1972 BEA/NAICS 2012
1987-96 NAICS 2012 (65 ind) SIC 1987 BEA/NAICS 2012
1997-2018 NAICS 2012 (71 ind) NAICS 2012 BEA/NAICS 2012

Notes: This table shows the classifications used for each range of years. The complete mapping of industry data

across sources is provided in the Appendix. All data are from the BEA, and described in detail in Section 3.
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Table 2: Estimates of U.S. capital elasticity, εK , under different assumptions

Summary statistics, εKt, 1948-2018: Fitted change 1948-2018:

Mean Median Minimum Maximum ∆ε̂K,48−18 Slope (β̂1) R-squared
Assumption (1) (2) (3) (4) (5) (6) (7)

Panel A: Baseline
No-profit 0.337 0.328 0.291 0.390 0.069 0.0010 0.572
Investment cost 0.269 0.267 0.224 0.304 0.055 0.0008 0.702
User cost 0.286 0.296 0.097 0.424 0.088 0.0013 0.144
Depreciation cost 0.208 0.211 0.154 0.266 0.106 0.0015 0.920

Panel B: Private business sector
No-profit 0.282 0.274 0.236 0.333 0.061 0.0009 0.535
Investment cost 0.191 0.195 0.147 0.234 0.076 0.0011 0.789
User cost 0.221 0.228 0.076 0.338 0.081 0.0012 0.223
Depreciation cost 0.150 0.157 0.093 0.202 0.100 0.0014 0.929

Panel C: De-capitalizing intellectual property
No-profit 0.311 0.305 0.267 0.356 0.045 0.0006 0.327
Investment cost 0.234 0.232 0.210 0.266 0.008 0.0001 0.037
User cost 0.248 0.257 0.066 0.393 0.040 0.0006 0.032
Depreciation cost 0.177 0.178 0.145 0.220 0.059 0.0008 0.747

Panel D: Private business sector and decapitalizing IP
No-profit 0.258 0.254 0.219 0.297 0.024 0.0003 0.145
Investment cost 0.157 0.154 0.136 0.201 0.012 0.0002 0.052
User cost 0.182 0.181 0.050 0.307 0.020 0.0003 0.017
Depreciation cost 0.120 0.121 0.086 0.150 0.040 0.0006 0.585

Notes: The calculation of εKt is described in the text. The panels of the table refer to different assumptions made

regarding the inclusion/exclusion of owner-occupied housing and intellectual property capital (the baseline includes

both). Within the panel, the rows refer to assumptions about the capital costs by industry, COSTiKt, that are used

to calculate εKt. The specifics of those assumptions are discussed in the text. The fitted change is estimated from a

simple OLS regression of εKt against time for the given variant, with β̂1 showing the estimated change per year, and

∆ε̂K,48−18 = 70 × β̂1 being the estimated overall change from 1948 to 2018. The R-squared is from the simple OLS

regression.
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Table 3: Capital costs as share of factor costs and value-added, by sector

Summary statistics, 1948-2018:

Capital costs/Factor costs, sCost
Kt Capital costs/Value-added, sV A

Kt

Mean Median Minimum Maximum Mean Median Minimum Maximum
Variant (1) (2) (3) (4) (5) (6) (7) (8)

Panel A: All industries
No-profit 0.337 0.328 0.291 0.390 0.337 0.328 0.291 0.390
Investment cost 0.245 0.246 0.222 0.266 0.215 0.217 0.183 0.242
User cost 0.272 0.275 0.087 0.460 0.258 0.250 0.067 0.576
Depreciation cost 0.174 0.178 0.137 0.211 0.139 0.145 0.107 0.164

Panel B: Private business sector
No-profit 0.282 0.274 0.236 0.333 0.282 0.274 0.236 0.333
Investment cost 0.176 0.177 0.139 0.208 0.153 0.154 0.116 0.185
User cost 0.213 0.213 0.072 0.346 0.198 0.189 0.059 0.385
Depreciation cost 0.134 0.141 0.088 0.174 0.111 0.120 0.070 0.141

Notes: The cost ratios are calculated as in equations (21) and (22). The panels of the table refer to different sectors

of the economy. Panel A includes all industries. Panel B is just the private business sector, which excludes owner-

occupied housing and government. Owner-occupied housing refers to NAICS codes HS, ORE, and 531. Government

refers to NAICS codes GFGD, GFGN, GFE, GSLG, GSLE, and GFG, which covers federal, state, and local gov-

ernment, both general and enterprises. In each row, the assumption made to calculate capital costs is labeled, as

described in the text. Columns (1)-(4) are summary statistics over 1948-2018 for the total estimated capital costs

divided by total factor costs (the sum of capital costs and labor costs). Columns (5)-(9) are summary statistics over

1948-2018 for total capital costs divided by value-added.
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Table 4: Estimates of capital elasticity, εK , for OECD countries 2005-15

Mean 2005-15 εK : Change ∆εK,05−15:

Capital cost assumption: Capital cost assumption:
Depreciation No-profit Depreciation No-profit
lower bound Investment upper bound lower bound Investment upper bound

Country (1) (2) (3) (4) (5) (6)

Austria 0.276 0.319 0.428 0.005 -0.008 -0.032
Belgium 0.273 0.296 0.387 -0.001 -0.006 -0.002
Czech Republic 0.322 0.372 0.503 0.006 -0.021 -0.006
Denmark 0.264 0.287 0.373 -0.023 -0.022 -0.013
Estonia 0.268 0.349 0.458 -0.000 -0.024 -0.069
Finland 0.273 0.294 0.402 0.004 -0.008 -0.032
France 0.281 0.312 0.371 0.027 0.012 -0.015
Germany 0.278 0.303 0.409 -0.010 -0.012 -0.036
Hungary 0.275 0.320 0.442 0.031 0.015 0.051
Italy 0.325 0.340 0.490 0.021 -0.035 -0.020
Japan 0.345 0.315 0.409 0.013 0.022 -0.015
Latvia 0.339 0.363 0.487 -0.003 -0.105 -0.064
Lithuania 0.245 0.311 0.518 0.016 -0.047 -0.018
Netherlands 0.230 0.270 0.389 -0.015 0.026 -0.005
Norway 0.309 0.364 0.493 -0.018 -0.048 -0.078
Portugal 0.275 0.303 0.449 0.049 -0.027 0.045
Slovakia 0.285 0.324 0.521 -0.066 -0.025 -0.036
South Korea 0.290 0.235 0.411 -0.099 -0.071 -0.026
United Kingdom 0.221 0.243 0.359 -0.000 -0.009 -0.009
United States (OECD) 0.266 . 0.431 0.022 . 0.017

OECD mean 0.280 0.313 0.441 -0.003 -0.020 -0.018
OECD median 0.276 0.312 0.433 0.005 0.000 0.005

United States (BEA) 0.256 0.291 0.381 0.008 -0.005 0.014

Notes: The calculation of εKt is described in the text. The value of εKt is calculated under three different as-

sumptions: depreciation costs only, investment cost, and no-profits. Each is described in more detail in the text.

Means in columns (1)-(3) are across the years 2005-15 for a given country. The differences in columns (4)-(6) are

εK,2015 − εK,2005. The two OECD rows show the mean and median, respectively, across all years and all countries

listed above those rows. The differences in the OECD rows refer to differences in those means and medians, respec-

tively. The “United States (OECD data)” row uses data from STAN and the OECD, the same source as for the

other OECD countries. Information on investment (gross fixed capital formation) was not available in STAN for the

U.S., and hence those estimates of εKt are missing. The ”United States (BEA data)” row uses data directly from the

BEA, as described in the earlier section of the paper. Differences in the OECD and BEA calculations for the U.S.

are, in part, due to differences in treatment of proprietors income.
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Table 5: Average annual TFP growth (%), by capital cost assumption

Assumption on capital costs:

No-profit (BLS) User cost Investment cost Depreciation cost
Years (1) (2) (3) (4)

1950-1959 1.89 2.01 2.13 2.22
1960-1969 2.31 2.49 2.53 2.65
1970-1979 1.35 1.56 1.51 1.61
1980-1989 0.85 0.80 0.95 1.03
1990-1999 1.18 1.22 1.33 1.39
2000-2009 0.74 0.95 1.10 1.20
2010-2018 0.54 0.57 0.57 0.58

1948-2018 1.29 1.40 1.48 1.58

Notes: All growth rates reported in percents. TFP growth is calculated using equation (25) to find annual growth

rate, which is then converted to a level of TFP using 1948 as a base = 100. Average annual growth rates are calculated

using those levels of TFP. This is done for the private business sector only (excluding government and housing) to

match BLS procedures. The different assumptions on capital costs correspond to the s parameter in equation (25)

and refer to different assumptions about capital costs used to calculate εsKt and εsLt. The “no-profit” capital cost

assumption in column (1) is equivalent to the BLS assumption regarding elasticities.
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