params: - {name: nu, value: .1, min: 0, max: 1, round: 0.01} - {name: cbar, value: .95, min: 0, max: 2, round: 0.01} - {name: gA, value: .02, min: 0, max: .1, round: 0.001} - {name: beta, value: .3, min: 0, max: 1, round: 0.01} - {name: Linit, value: 1, min: 0.01, max: 10, round: .01} - {name: Ainit, value: 1, min: 0.01, max: 10, round: .01} - {name: Xinit, value: 1, min: 0.01, max: 10, round: .01} calcs: AXLinit: (params.Ainit)*(params.Xinit)/(params.Linit) gAss: (params.lam)*(params.gL)/(1-params.phi) gL: (params.nu)*(calcs.AXLinit)^(params.beta)-(params.nu)*(params.cbar) AXLss: ((params.gA)/(params.nu)+(params.cbar))^(1/(params.beta)) yss: (params.gA)/(params.nu)+(params.cbar) gy: (params.beta)*(params.gA - calcs.gL) yinit: (calcs.AXLinit)^(params.beta) layout: OneGraphPlusSidebar: graph: xAxis: title: AX/L max: 3 min: 0 intercept: 0 yAxis: title: Growth rates max: .04 min: -.02 intercept: 0 objects: - Point: coordinates: [calcs.AXLss,params.gA] color: red droplines: vertical: (AX/L)_{ss} - Point: coordinates: [calcs.AXLinit, calcs.gL] droplines: vertical: \text{Initial } AX/L horizontal: g_L - Arrow: begin: [calcs.AXLinit,.002] end: [calcs.AXLss,.002] color: blue trim: .1 - Arrow: begin: [.1,calcs.gL] end: [.1,params.gA] color: blue trim: .1 - Curve: univariateFunction: fn: (params.nu)*((x))^(params.beta) - (params.nu)*(params.cbar) ind: x color: blue lineStyle: dashed strokeWidth: 4 label: text: g_L= \nu \left(\frac{AX}{L}\right)^{\beta} - \nu \overline{c} x: 8 - Line: yIntercept: (params.gA) slope: 0 lineStyle: dashed strokeWidth: 4 color: green label: text: g_A x: 9 sidebar: controls: - title: Parameters description: Adjust parameter(s) to see effect on growth rate of population. You can adjust multiple parameters. Reload the page to reset. sliders: - {param: nu, label: \nu} - {param: cbar, label: c(bar) } - {param: gA, label: g_A} - {param: beta, label: \beta} - title: Initial conditions description: You can adjust the initial AX/L ratio here. Note how it affects the initial living standards and how it influences (or does not) the steady state outcomes. sliders: - {param: Linit, label: L } - {param: Ainit, label: A } - {param: Xinit, label: X } - title: Calculations description: Given the initial conditions and parameters we can calculate these... divs: - html: "`$$\\\\text{Initial } g_y = \\\\beta (g_A - g_L) = ${calcs.gy.toFixed(4)}$$`" - html: "`$$\\\\text{Steady state } g_y = 0$$`" - html: "`$$\\\\text{Initial } g_L = \\\\nu \\\\left(\\\\frac{AX}{L}\\\\right)^{\\\\beta} - \\\\nu \\\\overline{c} = ${calcs.gL.toFixed(4)}$$`" - html: "`$$\\\\text{Steady state } g_L = ${params.gA.toFixed(4)}$$`" - html: "`$$\\\\text{Initial } y = \\\\left(\\\\frac{AX}{L}\\\\right)^{\\\\beta} = ${calcs.yinit.toFixed(4)}$$`" - html: "`$$\\\\text{Steady state } y = \\\\frac{g_A}{\\\\nu} - \\\\overline{c} = ${calcs.yss.toFixed(4)}$$`"