params: - {name: sK, value: .2, min: 0.01, max: 1, round: 0.01} - {name: gA, value: .02, min: -.01, max: .05, round: 0.01} - {name: gL, value: .01, min: -.05, max: .15, round: 0.01} - {name: delta, value: .05, min: 0, max: .15, round: 0.01} - {name: sX, value: .02, min: 0.001, max: .15, round: 0.001} - {name: Kinit, value: 2.1, min: 1, max: 10, round: .01} - {name: Ainit, value: 2, min: 1, max: 5, round: .5} - {name: Linit, value: 1, min: .5, max: 4, round: .5} - {name: Xinit, value: 1, min: .5, max: 10, round: .5} - {name: KYold, value: 2.5, min: 0, max: 4, round: 0.1} - {name: alpha, value: .3, min: .001, max: .5, round: 0.001} - {name: beta, value: .1, min: .001, max: .4, round: 0.001} calcs: a: (params.alpha)/(1-params.alpha) b: (params.beta)/(1-params.alpha) Binit: (params.Ainit)^(1-calcs.b)*((params.sX*params.Xinit/params.Linit)^(calcs.b)) gBss: (1 - calcs.b)*(params.gA) - (calcs.b)*(params.sX + params.gL) KYss: (params.sK)/(params.gL + calcs.gBss + params.delta) KYinit: ((params.Kinit)/(calcs.Binit*params.Linit))^(1/(1-params.alpha)) layout: TwoVerticalGraphsPlusSidebar: topGraph: xAxis: max: 15 ticks: 15 yAxis: title: Growth rate max: .05 min: -.02 objects: - Line: yIntercept: .0129 slope: 0 color: blue lineStyle: dashed label: text: \text{Old BGP} x: 15 - Line: yIntercept: (calcs.gBss) slope: 0 color: green lineStyle: dashed label: text: \text{New BGP} x: 15 - Curve: univariateFunction: fn: (calcs.gBss)+(params.alpha*params.sK)*(calcs.KYss*(1-(.9)^(x)) + calcs.KYinit*((.9)^(x)))^(-1) - (params.alpha)*(params.delta + calcs.gBss + params.gL) ind: x color: black label: text: \text{Actual} x: 10 bottomGraph: xAxis: title: Time max: 15 ticks: 15 yAxis: title: Log GDP per capita max: 1.5 min: 0 objects: - Curve: univariateFunction: fn: (calcs.a)log(2.74) + log(1.035) + (.0129)*(x) ind: x color: blue lineStyle: dashed label: text: \text{Old BGP} x: 15 - Curve: univariateFunction: fn: (calcs.a)log(calcs.KYss) + log(calcs.Binit) + (calcs.gBss)*(x) ind: x color: green lineStyle: dashed label: text: \text{New BGP} x: 15 - Curve: univariateFunction: fn: (calcs.a)*log(calcs.KYss*(1-(.9)^(x)) + calcs.KYinit*(.9)^(x)) + log(calcs.Binit) + (calcs.gBss)*(x) ind: x color: black label: text: \text{Actual} x: 10 sidebar: controls: - title: Parameters description: Adjust parameter(s) to see effect on growth rate and level of GDP per capita. You can adjust multiple parameters. Reload the page to reset. sliders: - {param: gA, label: g_A} - {param: gL, label: g_L} - {param: sK, label: s_K} - {param: sX, label: s_X} - {param: delta, label: \delta} - {param: alpha, label: \alpha} - {param: beta, label: \beta} - title: Initial conditions description: Adjust initial conditions to see effect on growth rate and level of GDP per capita. Note how these differ from adjusting parameters. Compare the effects of X versus K, in particular. sliders: - {param: Kinit, label: K_0} - {param: Ainit, label: A_0} - {param: Linit, label: L_0} - {param: Xinit, label: X_0} - title: Steady state description: See how changing resource use or endowment changes the growth rate in steady state. It can also change the steady state K/Y ratio, and note in the graph what changes the level of the BGP (and what does not). divs: - html: "`$$\\\\text{S.S. } g_y = \\\\left(1-\\\\frac{\\\\beta}{1-\\\\alpha}\\\\right)g_A - \\\\frac{\\\\beta}{1-\\\\alpha}(s_X + g_L) $$`" - html: "`$$\\\\Rightarrow ${calcs.gBss.toFixed(4)}$$`" - html: "`$$(K/Y)_{ss} = \\\\frac{s_K}{g_B + g_L + \\\\delta} = ${calcs.KYss.toFixed(2)}$$`"