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1
Growth Facts

This material forms the empirical background for much of the theory
that will follow. The facts developed in this chapter are what we're
trying to explain with that theory. Additional facts will get intro-
duced along the way, but these form the core for discussing economic
growth over the long run. This chapter can be seen as an update on
the original “Kaldor Facts” that motivated much of growth research
for years."

1.1 Growth rates and levels of GDP

The first thing is to simply look at how the (log) of real GDP per
capita evolved over time, for a set of relatively developed economies.
Figure 1.1 does this for the US, UK, Canada, Australia, and Mex-
ico. The most important thing in this Figure is how boring it is. The
growth rate was stable for each country.Moreover, that growth rate
was very similar for all five. If you stare at the figure long enough,
you can make the case that Mexico’s growth rate became perma-
nently lower around 1980 (or that Mexico’s growth rate was some-
what higher than normal from 1965 to 1980).

While the growth rates of these five countries are stable and quite
similar, note that the level of GDP per capita was not similar. Mexico
is demonstrably poorer than the others. The difference in log GDP
per capita between Mexico and the US is about 1, which means that
the ratio of GDP per capita between the US and Mexico is about 2.7
to 1, and has been for about sixty years. Mexico’s living standards
grew, but only enough to keep pace with the US. The other three
countries in the figure are much closer to the US living standard, but
again those gaps remained relatively stable over time.

Not every country is as boring as these five. Figure 1.1 plots (log)
GDP per capita for the US (as a reference) and four new countries
(Germany, Japan, South Korea, and China). For each of these four
the locus of log GDP per capita was not linear, or often even close to

* Nicholas Kaldor. A model of economic
growth. The Economic Journal, 67(268):
591-624, 1957

Recall that the derivative with respect
to time of something measured in logs
is a growth rate. dIny; /9t ~ Ay:/y:.
Thus the slope of a line in Figure 1.1 is
equal to the growth rate.

Figure 1.1 and others use data on real
GDP per capita from the Penn World
Tables. This project attempts to measure
living standards in different countries
using a common set of prices, so that
the measure of real GDP is comparable
across countries. This is not a trivial
task, nor is it foolproof, and there are
issues with making these comparisons
across countries.
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linear. The slope of these lines changed over time, implying that the
growth rate of GDP per capita changed as well. In almost every case,
however, the lines look concave, meaning that the growth rate was
falling over time.

Moreover, you can see that as GDP per capita in each country
approaches the level of that in the US, the growth rate falls to match
(roughly) the US growth rate. Germany, Japan, and now South Korea
all seem to be asymptoting towards the level of living standards in
the US. They started out much lower in 1950 and 1960, as you can
see. In 1950 the gap in living standards between the US and Germany
was about 2.7 to 1, between the US and Japan about 4.5 to 1, and
between the US and South Korea about 25 to 1. But their high growth
rates (as evidenced by the high slopes) allowed them to catch up to
the US, at which point their growth rates slowed (lower slopes), and
they are all now have living standards slightly lower than the US.

The experience of China is not as conclusive. In 1950 the gap in
living standards with the US was about 43 to 1. Around 1980, the
growth rate in China picked up, and since then it has been growing
much faster than the other countries in the Figure. By 2015, this left
the gap between the US and China at about 4.5 to 1. Based on the
evidence of the other three countries, we might expect that in the

—— United States
United Kingdom

----- Canada
Australia

— Mexico

2020

Figure 1.1: Log income per capita over
time for select countries. Data is from
the Penn World Tables 9.1.

It is not imperative that the US be used
as a reference point, although much of
the economics literature implicitly does
s0. One of the reasons is that the US
has good long-run data. We could use
a different developed country as the
reference points and all the facts in this
chapter would still hold.
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future China will approach the living standard of the US, but that its
growth rate will slow down so that it matches the US. We'll see in the
following chapters why theory suggests that this is likely to happen.
But we don’t know this will happen for sure.

Nigeria also looks like an outlier here. In 1950 it had higher living
standards than China and South Korea, but from that point forward
the growth rate was close to zero, as shown by the line being close to
flat. Only since 2000 does there appear to be some regular growth in
GDP per capita. In this case we don’t have anywhere close to enough
evidence to decide whether Nigeria is entering a period in which it
will catch up to the other countries, or whether it will continue to lag
behind.

Nigeria aside, there is a tendency for countries to converge to-
wards a common path for GDP per capita. This suggests that their
growth rate is negatively related to the level of GDP per capita. It
turns out to be helpful to look at this explicit relationship, as it helps
illustrate the conditions where this convergence breaks down. Figure
1.1 plots the growth rate of GDP per capita, average over 10 years,
against the level of output per capita at the beginning of a 10-year
period, for six countries. It divides into two halves quite easily, with
the dividing line being roughly a log GDP per capita of 8.5, which is

GROWTH FACTS 7
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Figure 1.2: Log income per capita over
time for select countries
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roughly the living standard measured in Nigeria in 2015.
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To the right of that dividing line, there is a clear negative relation-
ship of the growth rate and the level of GDP per capita. Given that
economic growth pushes up the level of GDP per capita, by defini-
tion, this part of the Figure works a little like a slide. If you get on
the slide with a GDP per capita around 8.5, then the growth rate is
often around 6-8% per year, and GDP per capita rises rapidly. But
as the living standard rises, growth slows down, until you get to the
bottom of the slide at around (log) GDP per capita between 10 and
11, near the US level, and growth bottoms out at about 1-2% per year.
The right-hand part of this Figure is the analogue of what Figure 1.1
showed for Japan, Germany, and South Korea converging to the US.
The tight overlap of the data from different countries here indicates
that there is a consistent process at work in all these countries, and at
least suggests that we could use a similar model of economic growth
to explain what was going on in all of them.

This follows, however, only to the right of that dividing line. For
the data points with log GDP per capita less than 8.5 in Figure 1.1,
there is no systematic relationship. If anything, it may appear that
the growth rate gets lower as a country gets poorer. But overall it
appears as if the growth rates in economies that are very poor tend

O United States
Japan

< Germany

A China

+ South Korea
Nigeria

11

Figure 1.3: 10-year growth rates versus
output per capita



to vary a lot, but that they do not systematically lead to convergence
with rich countries. Nigeria is a good example, as you can see that
the growth rate bounced between -3% and 5% throughout its recent
history, leaving log real GDP per capita hovering around 8 the whole
time. Once a country can lift its log GDP per capita above 8.5, then
it appears to be on this slide or conveyor belt towards high living
standards, but absent that there is no apparent logic to the growth
rate of the economy. Note that this is not some iron law of nature,
although if we plotted even more countries this same idea would
come through as well.

In terms of how we approach the study of economic growth,
the division in Figure 1.1 is quite important. These notes, and this
course, are focused on the explanation for the right-hand side of this
Figure, with the implied convergence over time. The regularity of
the negative relationship between growth rates and GDP per capita,
along with several other regularities discussed below, will give us
several very strong predictions about how economic growth works
in relatively developed economies. Explaining what happens on the left-
hand side of the Figure, among relatively poor economies, and what
does or does not allow them to make the jump to the right-hand side,
is beyond the scope of these notes and this course.

All those caveats aside, we can state some stylized facts for those
developed economies that arise from the Figures already show. None
of these should be taken as certainties or universal.

Fact 1.1 (Stable growth rates) The long-run growth rates of developed
economies appear to be stable in the long run.

This fact comes from looking at Figure 1.1, in particular. In each
case the growth rate (the slope of the plotted line) looks similar over
many decades. Within Figure 1.1, the data for Germany and Japan
corroborate this story, and South Korea appears headed towards a
stable growth rate.

Fact 1.2 (Common growth rate) The stable growth rates of developed
economies appear to be the same in the long run, around 1.8% per year.

This is a stronger statement that the first fact, and comes again
from looking at the evidence in Figures 1.1 and 1.1. These economies
not only appear to be headed towards stable growth rates, but given
that the plotted trajectories of log GDP per capita are all parallel, this
means they all have the same stable growth rate. If you calculate the
actual slop of those lines, you get a number like 0.018, or 1.8% per
year growth.

Fact 1.3 (Temporary growth differences) Differences in the growth rate
of GDP per capita between developed economies appear to be temporary.

GROWTH FACTS ¢

There is a deep empirical literature on
convergence across countries. Figure
1.1 captures a lot of the intuition in the
results of that literature, without being
systematic. What the Figure does not
show is that if we looked at a much
wider range of countries, we could
find other “clubs” of countries that had
negative relationships between growth
rates and the level of GDP per capita,
suggesting convergence with the club.
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Fact 1.2 is a long-run fact, and as we saw in Figure 1.1 and Figure
1.1 the growth rates of countries can differ by quite a bit at any
given point in time. But at least for developed countries the data
suggest that those differences dissipate over time. In particular, the
differences in growth rate appear to be driven by some countries
being “behind” in living standards, and their high growth rate allows
them to catch up, at which point their growth rate declines to match
the other developed countries.

Fact 1.4 (Permanent level differences) Even in the long run, there are
permanent differences in the level of GDP per capita across countries.

This fact is most evident by looking at Figure 1.1, and comparing
countries to the US. While these countries all share a similar growth
rate (i.e. the slope of the lines) they have different levels of GDP per
capita (i.e. the intercepts). Thus there are persistent differences in
living standards across countries even though their growth rates all
converge to a similar rate.

The word “level” here is one that can get confusing. In Figure 1.1
we might say that the level of living standards is permanently higher
in the US compared to the UK. This means the whole path of GDP
per capita for the US lies above the UK. Another way of saying this
is that the level of living standards is higher in the US than in the
UK at any given point in time. But saying this does not imply a lack of
growth in the UK, or higher growth in the US. As you can see in the
Figure, they grow at the same rate, which keeps the level difference
constant over time.

1.2 Even longer-run evidence

The evidence in this section is meant to complement that in the
prior one. By using an alternate series measuring real GDP from
Angus Maddison, we can trace back real GDP per capita even farther
for a handful of countries. That data confirms that the facts just
established above hold not just from 1950 to today, but from 1870 to
today, a span of almost 150 years. Maddison’s exact numbers for real
GDP per capita do not match those used in the prior Figures, but that
is not a failure of either data source. This only reflects differences in
units.

Figure 1.2 plots the (log) real GDP per capita over time for four
countries: US, UK, Germany, and Japan. For the US and UK, this
shows that the Great Depression and World War II (roughly 1930-
1950), while massive economic events, did not alter the long-run
growth rate of either country. For the UK, there is some evidence
that World War I, around 1915-1920, did push GDP per capita down

We could go back even further in time
using Maddison’s data. This would
indicate that the stable growth rate of
around 2% seen for developed countries
only begins at some point in the early
to mid-1800s, depending on the exact
country. Prior to that the growth rate
was probably closer to 0% per year,
implying stagnant living standards.
There is a rich literature encompassing
economics and history studying the
determinants of the jump from this
“Malthusian” stagnation to sustained
economic growth.
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Figure 1.4: Real GDP per capita over
time

permanently, but thereafter the growth rate was similar to before that

war. For Germany, you can see as well that even with the disruptions

caused by World War I and World War II, the economy eventually

ended with the level of GDP per capita one might have extrapolated

for it using the period from 1870 to 1910.

Japan had a different experience, which helps to illustrate that
countries are not necessarily locked into a single path. Note that from
1870 to about 1940, Japan had a stable growth rate, but was much
poorer than the other three countries. The gap between the US and
Japan in 1930 was around 2.7 to 1. There was a significant drop in
living standards because of World War II. But in the aftermath of
that war, Japan grew very rapidly and did not return to the same
level of GDP per capita one would have expected from 1870 to 1930.
Unlike Germany, Japan changed the level of its living standards
fundamentally in this period. It grew past the old level path of GDP
per capita, and converged towards the richer countries like the US
and UK.

The point is that you should not take Fact 1.1 about having a
stable growth rate as implying that countries have stable levels of
living standards. Japan illustrates that countries can, and occasionally
do, shift from one level of living standards to another. Both before
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and after that shift they may end up with the same common, stable,
growth rate. When we build the theory behind economic growth,
we’ll get some clues as to what might have changed in Japan after
World War 1II to push up the level of living standards beyond the
pre-war level. Unlike Germany, if we had extrapolated GDP per
capita for Japan using data from 1870 to 1910 (or 1930) we’d have
underestimated it from about 1960.
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Figure 1.5: 10-year growth rates over
time

We can gain some confirmation of Fact 1.3 from Figure 1.2. This
plots 20-year average growth rates over time, to smooth out business
cycle fluctuations. The point of the Figure is that while there were
some significant spikes in the growth rates of these four countries
(e.g. the Depression, after World War II), in each case the spikes
dissipated over time, and the growth rate tended to return to its
stable value. Note that this is true even for Japan, which shifted up
the level of living standards. Nevertheless, its growth rate eventually
dropped back to the roughly 2% per year value seen across almost all
developed countries.
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1.3 Consumption and investment rates

The prior facts relate to the growth rate of GDP per capita, but do
not speak to the composition of GDP. The next set of facts have to do
with the share of GDP accounted for by spending on consumption
(e.g. food, non-durable goods, personal services) and investment (e.g.
capital goods, structures, and some durable goods).

Figure 1.3 shows the share of GDP accounted for by consumption
for a set of countries with stable growth rates over a long period
of time. This is about as boring as you’d expect in their case. Con-
sumption shares ranged between 50% and 70%, but tended to remain
stable over time. There are exceptions, as with Mexico and the United
Kingdom’s falling consumption shares from 1950 to 1970, or the slow
rise of the consumption share in the United States over time. But in
broad terms, the consumption share did not have a distinct trend.
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Figure 1.6: Consumption as share of
There is more excitement with the second set of countries, in GDP
Figure 1.3. China stands out with a decline in the consumption share
from 1950 to 2015, mirroring the rise in investment share over the
same period. South Korea also saw a distinct drop in consumption
share from 1950 to 1990, although at that point it stabilized around

50%. For Nigeria, the consumption share exhibited a lot of noise,
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which is probably due as much to a lack of data quality as it is to any
real economic events. In the middle of the figure, at around 50-60%
consumption shares, are Japan and Germany. Despite their rapid
growth to catch up to the US, they did not have any distinct change
in their consumption share over this period of time.
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We can do a similar study of investment shares of GDP. Figure 1.3
plots the investment shares for the countries with stable growth rates.
The clear indication from the Figure is that these shares are stable as
well, despite fluctuations. They also happen to be similar across the
five countries, at a little more than 20% of GDP.

If we look instead at the set of countries that did not display such
stable growth, there is again more variety in the data. Figure 1.3 plots
the investment share in GDP for these countries, with the US again
as a reference point. There is more dispersion here in the investment
rate, with Germany, Japan, China, and South Korea all reaching
investment shares above 30% at times. But even for these countries
the investment shares all remain somewhat stable over time, with
some evidence of a decline in recent decades for South Korea and
Japan.

Nigeria appears to have experienced a significant drop in invest-
ment share around 1980, and then it remained at about 10% for a

—— United States
Germany
..... Japan
South Korea
— . China
.......... Nigeria

2020

Figure 1.7: Consumption as share of
GDP

China’s evidence on investment and
consumption shares do not seem to
conform to patterns in most other
countries. The growth rate of GDP
per capita in China also appears as a
clear outlier compared to the set of
developed countries that are typically
studied. Whether their economic
growth is truly different than what
we observed in the past is still open
for debate. There are quetions about
whether the data from China is reliable,
and represents the actual facts on the
ground.
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long period of time until a recent uptick. China is one country that
seems to have a trend in the investment share. From around 20% in
1960, there was a steady increase to almost 50% by 2015.

What is not obvious from all these figures is whether there is any
correlation of investment (or consumption) with the level of living
standards. Figure 1.3 plots the investment share of GDP against the
log of GDP per capita. To make this figure more readable, the over
9,000 actual data points representing investment shares and GDP per
capita from each country/year observation were separated into 100
different bins, based on GDP per capita, and the data points each
show the average investment share and GDP per capita for a bin.

There is a vague indication in Figure 1.3 that investment rates
are higher when GDP per capita is higher, at least up to a log GDP
per capita of 10. At that point, there is no obvious relationship. It is
important to note that you cannot make any causal interpretation
from Figure 1.3. That is, you cannot infer that if GDP per capita
were to rise in a given country, then necessarily the investment share
would rise. Nor can you infer that if the investment share were to
rise, so would GDP per capita. All this data shows is that there is a
very weak correlation of investment shares and GDP per capita for
(relatively poor) countries. This correlation may be driven by some

2020
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Figure 1.8: Investment as share of GDP

Binning data as in Figure 1.3 is a

convenient way of summarizing a
large amount of observations that
would otherwise make for a very messy

figure. The binned data still capture
the underlying relationship, and you
could run a regression on the binned
data and retrieve the same estimated
correlation of investment shares and

GDP per capita as you'd get using the

full dataset.
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third factor we haven’t considered.

We will establish a few significant facts from this section, although
again you should be concious that these are not meant to be iron laws
of economics.

Fact 1.5 (Stable investment and consumption shares) The consump-
tion and investment shares of GDP tend to be stable over long periods of
time for most developed countries.

There are obvious exceptions, which we can consider as we go
forward. Also be aware that this fact on stable investment and con-
sumption shares does not imply that these shares are the same across
all countries.

Fact 1.6 (Investment share and GDP per capita) There is a weak,
positive, correlation of the investment share and the level of GDP per capita.

As noted above, this is not a causal statement. It does mean that
any theory of economic growth we develop should be capable of
replicating this positive correlation. Our theory might imply that
causality runs one way or the other, and that is something we might
be able to establish empirically through some other method or data.

—— United States
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..... Japan
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— = China
.......... Nigeria
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Figure 1.9: Investment as share of GDP

The investment share in Figure 1.3 is
nominal investment over nominal GDP.
But as the relative price of investment
goods differs across countries, and
tends to be higher in poor countries, the
ratio of real investment to real GDP has
a much stronger positive relationship
with GDP per capita.
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But at a minimum our theory should capture this Fact in some
manner.

1.4 Capital/output ratios

One of the reasons we are concerned with the investment share in
GDP is that this investment spending represents the gross formation
of new capital, where the “gross” refers to the fact that it doesn’t
account for the effect of depreciation on existing capital. That capital,
which includes things like homes, office buildings, factories, equip-
ment used by businesses, and intellectual property like software, is
used to produce GDP. Hence investment spending, the capital stock,
and GDP are all related. Much of the baseline theory of economic
growth will deal with those relationships.

Prior to that, we can establish some facts about how capital and
GDP are related. We'll look at capital/output ratios, which are sim-
ply the size of the capital stock divided by total GDP (output). The
total stock of capital is measured here as described in the preliminary
chapter, using a perpetual inventory method, meaning it is really a
measure of the accumulated spending on investment, adjusted for
depreciation.

Figure 1.10: Investment shares and GDP
per capita



18 MACROECONOMICS I

Capital/output ratio

1950 1960 1970 1980 1990 2000 2010
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What is the capital /output ratio measuring, leaving aside all
of those caveats about how capital itself is measured? It would
probably make more sense to think of the output/capital ratio, which
would be a crude measure of the average product of capital, or
how much GDP we were able to produce for each unit of capital
we have. For reasons having to do with how we write down the
theory mathematically, it has been more traditional to talk about
the capital /output ratio, however. So the capital/output ratio is just
something like the inverse of the average product of capital.

Figure 1.4 plots the capital/output ratios for the set of countries
with stable growth rates. What this shows is that these ratios are
somewhat stable over time, but obviously not constant. This implies
that the average product of capital is somewhat stable over time as
well, but not exactly constant. For the US, the capital/output ratio
started around 2 and ended up closer to 3. In Canada and Australia,
the ratios stayed more stable, but there is evidence they rose during
the 2000s. Note that this means for all of these countries the average
product of capital declined somewhat over time. In Mexico there was
a shift up in the capital/output ratio around 1980, but stability before
and after. Overall, however, these ratios do not have pronounced
trends.

—— United States
United Kingdom

----- Canada
Australia

— Mexico

2020

Figure 1.11: Capital/output ratio for
select countries

Don’t confuse the average product of
capital with the return on capital, which
would be capturing something like

the amount of output that the owner

of a unit of capital gets paid for using
that capital. That return could depend
on the marginal product of capital,
which might be related to the average
product, but that relationship is not
straightforward.
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For the other set of countries, there is again some more interesting
action at work in Figure 1.4. Germany had a stable capital /output
ratio from about 1970 forward, as did China, despite their rising
investment share in GDP. In other words, their average product of
capital did not change much over time. Japan’s capital /output ratio

rose, in contrast, from below 2 to over 4, before leveling off after 2000.

Thus Japan’s average product of capital fell for several decades. South
Korea saw a similar rise in the capital/output ratio, although the rise
seems to be slowing down in recent years. Nigeria had a significant
swing up in the capital /output ratio, followed by just as dramatic a
fall, leaving them with a capital /output ratio of just over 1 after the
year 2000.

We can do something similar to what we did for investment
ratios, and plot the capital/output ratio against the level of GDP per
capita, as in Figure 1.4. Similar to the prior figure, there is a positive
relationship between the capital /output ratio and living standards,
except for at the very top end. The combination of Figure 1.3 and
1.4 makes some sense. As the capital stock depends on the amount
of investment spending done, then we would expect that the capital
stock should be larger (relative to GDP) if the amount of investment
spending (relative to GDP) is larger. There is nothing deeper than
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Figure 1.12: Capital/output ratio for
select countries
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that to learn from Figure 1.4. The same qualifier as before applies. Do
not make any causal interpretations of the relationship in Figure 1.4.
This only represents a correlation we should expect to explain in our
theory.

6.0
5.0
4.0
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Capital/output ratio
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0.0
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To give some sense of the types of capital that have been folded
into the aggregate capital stock, and establish that these too are stable
with respect to output, Figure 1.4 plots the capital /output ratio for
the US only. The data for this Figure come straight from the US
National Accounts, and not from the Penn World Tables. Thus the
actual capital/output ratios will differ.

The aggregate capital/output ratio is around 2.2-2.4 the whole
time, but this Figure shows more detail about movement in the cap-
ital/output ratio because the vertical axis is compressed compared
to Figure 1.4. Regardless, below that aggrete capital/output ratio is
plotted the capital /output ratio for different types of capital. This
is useful to establish first that the ratios were stable for almost all
capital types (excluding intellectual property). Second, this is useful
to show that structures, both residential and non-residential, are the
dominant types of capital. Structures make up around 75-80% of all
capital (by value) in any given year.

All this gives us enough information to establish two more facts

12

Figure 1.13: Capital/output ratio
relative GDP per capita
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Figure 1.14: Capital/output ratio, by
capital type, for the US
regarding economic growth.

Fact 1.7 (Stable capital/output ratios) The capital/output ratio in devel-
oped countries is stable over long periods of time.

As with several other facts, be careful in not over-interpreting
this one. This fact says that for a given country, the capital/output
ratio is stable over time. It does not say that capital/output ratios are
identical across countries. As you saw in the Figures, these can differ.

Fact 1.8 (Capital/output ratio and GDP per capita) There is a weak,
positive, correlation of the capital/output ratios and the level of GDP per
capita.

1.5 Output and cost shares

The last set of facts we want to establish relate to shares of GDP,
similar to what we looked at before. Consumption and investment,
however, are part of the expenditure decomposition of GDP. Here we
want to look instead at the income decomposition of GDP. Recall that
this breaks down GDP into payments to labor (e.g. wages), payments
to capital, and economic profits.
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Figure 1.15: Labor share of GDP for
selected countries

If we start with labor, Figure 1.5 plots the total payments to labor
as a share of GDP. The data availability here is not great, so only the
US has information running back to 1950. However, it appears to
hold for all the countries in this Figure that the labor share of output
is stable over long periods of time. There is a slight tendency for it to
decline in Canada and Australia, but in general these appear to stay
around 60% of output, except for Mexico, where the share is more

like 40%. One of the reasons Mexico may have a
low reported labor share is that much

L . . . of its labor income gets reported as
again find that a relatively poor country, Nigeria, has a low reported part of operating surplus because

labor share, like Mexico, at least until recently. But for the remainder, workers run their own small businesses.
Research has shown that if one makes
adjustments for this, the labor share of
the prior sections where these countries often had more dispersed countries like Mexico tend to get closer
to developed country shares.

Turning to the other set of countries, there is a stimilar story. We

the labor share of output hovers around 60% over time. Unlike

experiences, as far as the labor share is concerned they look more like
the countries with stable growth rates.

As explained in the preliminaries, we cannot simply assume that
one minus the labor share of output is equal to capital’s share of
output, because we do not have good measures of economic profits
across countries. What we can do is look at different data on total
costs instead, and look at what fractions of those costs are made up
of labor payments and capital payments. What we lose here is that
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costs are not equal to GDP, so this won’t give us capital’s share of
GDP. However, this is a small loss, because as we’ll see when we turn
to the theoretical work, the cost shares of capital and labor are going
to be the more relevant pieces of information.

Figure 1.5 plots labor’s share of total costs (i.e. total payments to
labor and capital) for several countries. This data is drawn from a
different data source, KLEMS, than the national accounts data, and so
we are assuming that the relationships in this Figure apply to nations
as a whole. This is probably a good assumption for the countries
in this Figure, as their statistical agencies cooperate with KLEMS.
The drawback of KLEMS is that it only goes back to 1980, and not to
1950.

Regardless, what the Figure shows is that labors share of costs
are stable across time. And because this is constructed as a share of
costs, we know then that capital’s share of costs is stable across time
for these countries as well. Those labor shares vary across countries,
but tend to fall in the range of 50-70%. This is going to serve as our
final fact of this chapter.

Fact 1.9 (Stable labor and capital cost shares) For developed economies
the shares of total costs accounted for by labor and capital are stable over
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Figure 1.16: Labor share of GDP for
selected countries

It is possible to infer capital’s share of
output if we’re willing to make some
assumptions about rates of return on
capital. There is current research on this
subject that establishes that the share
of output paid to capital has fallen over
time while the share going to economic
profits has risen.
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Figure 1.17: Labor share total costs for
select countries

time.

As you have probably noted at this point, the overriding theme
of the Facts has to do with stability. Stable growth rates, stable in-
vestment and consumption shares, stable capital /output ratios, and
stable cost shares. We are going to reject certain theories of growth
because they cannot match these facts, and we are going to build up
our theory of growth with these facts in mind. In the next chapter
they will allow us to make some strong statements about what drives
economic growth.



2
Production

The facts regarding growth from the prior chapter indicated stability
in several key variables over time. The stable facts of growth are often
combined under a single umbrella term that is useful as a short-hand
way of summarizing all those facts.

Definition 2.1 (Balanced growth path) A balanced growth path (BGP)
describes a situation where output (GDP) per capita, capital per capita, and
consumption per capita grow at the same rate, and that rate is stable over
time. A BGP, by implication, involves a constant capital/output ratio.

The term “balanced growth path” is
This definition takes Fact 1.1 (the stability of the growth rate of sometimes broadened to include the
Kaldor Facts on labors share of output
and the interest rate mentioned in
1.7 we know that the capital/output ratio is stable over time, which the last chapter. I prefer to keep the

implies that capital and output must grow at the same rate, and deﬁfnit?or‘ of the term narrow, to avoid
conrusion.

GDP per capita), and combines that with several others. From Fact

hence output per capita and capital per capita must grow at the same
rate. Fact 1.5 said that the consumption share of GDP was constant
over time, which means that consumption per capita must grow at
the same rate as GDP per capita.

The term BGP straddles the boundary of theory and empirics. A
BGP is a hypothetical construction in which the growth rate of GDP
per capita, capital per capita, and consumption per capita are all
exactly identical and perfectly constant over time. It therefore also
has a perfectly constant capital/output ratio. No country even truly
meets these conditions, but given what we saw in the prior chapter
the BGP is a useful abstraction of what occurred in most developed
nations over time. We therefore often say that a particular country
appears to be “on” a BGP because its data roughly conforms to the
definition.

Because we see that many economies tend to be “on” a BGP (e.g.
the US or UK), when we write down a theory of economic growth
we’re going to insist it predicts a BGP will result. If it does, then
we know it can replicate the broad features of economic growth we
saw in the data. Given that, we’ll be able to infer some things about
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how economic growth must work by seeing what assumptions are
necessary for our theory to have a BGP as an outcome. As we also
see that a number of economies are “off” a BGP (e.g. Japan or South
Korea), we’ll also want our theory to be able to describe growth in
those situations, and why in those cases the countries all appear to
move towards a BGP.

2.1 Accounting and notation

Before we get started theorizing, we need to establish some ideas
about what we’re accounting for in the sense of what GDP is count-
ing and what GDP growth is measuring.

Definition 2.2 (Nominal GDP) Nominal GDP is denoted

PY = ijcj (2.1)
j€]
where | are the set of final products or goods or services (or whatever) that
are sold in the economy, p; is the price of an individual product, and c;
are the real units of that product. P denotes a price index for GDP and Y
denotes real GDP.

From this you can see that real GDP, Y, is something that is im-

plicit. We cannot measure it directly, the way we can with nominal
GDP.

Definition 2.3 (Real GDP growth) Holding prices constant, the change
over time in real GDP is ‘
av =y g
i€l
where dc; is the change in real purchases of each product. This means the
growth rate of real GDP is

dy p]'Cj de
gr="s=Y 5 (2.2)
Y g PY g
The ratios pjcj/ PY are nominal expenditure shares and dc;/c; is the growth
rate of real purchases of each product.

That’s a lot. It just says that the growth rate of real GDP is a
combination of growth in real consumption or purchases of each
product in the economy, weighted by their expenditure share. We're
not assuming that GDP is just a single monolithic “thing”, it's made
up of multiple goods and services. We will work almost exclusively
with things like gy and talk about GDP growth as one thing, but
you should keep in mind that this encompasses plenty of changes

GDP measures final goods and services,
which are just those used to consume
or used to produce in the future.

This excludes intermediate goods

(e.g. energy, raw materials) that are
purchased and then turned into final
goods or services. Gross output is a
different concept that is the sum of
GDP and spending on intermediate
goods and services.
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within it. Saying that gy is equal to 0.02 does not mean each and
every product grew at 2%. Some will be higher, some lower.

GDP is an accounting concept, and the two primary ways of
adding up GDP have to reconcile. You are probably familiar with
the expenditure side from intermediate macro classes, which say
something like Y = C+ 1+ G+ (X — M).

Definition 2.4 (Expenditure approach to GDP) The expenditure ap-
proach to GDP classifies the | transactions by the type of product, and in
accounting terms is

PY+ ) pej = Y picj+ 1 piei+ Y piei+ Y pieg (23)
jEM jeC jel jeG jexX
where M (imports), C (consumption), I (new capital goods), G (government
purchases), and X (exports) are sets of products that are each a subset of the
J overall set of products.

Notice that I put imports on the “left”. That is because the combina-
tion of GDP (gross domestic product) and imports are the combined
set of products that are available for purchase in the economy. The
expenditures on those products are classified either as consump-
tion, new capital goods, government, or exports. The choice of this
classification is arbitrary (e.g. education is consumption).

From the income side every transaction is income to someone or

some firm (who then pays workers and owners of capital) Economic profits are payments for
transactions over and above their cost of

Definition 2.5 (Income approach to GDP) The income approach to production in the same period of time.

GDP classiﬁes total GDP as They might reflect market power (e.g. a

monopolist) or might reflect payments
for fixed costs.

PY =11+ W + RK (2.4)
where 11 are economic profits (not accounting ones), W is the total wage bill,
and RK are payments to owners of capital.

The income approach does not assign each transaction to one of these
three, but breaks each transaction (notionally) down into three parts.
Those income classifications are used to write things in terms of

shares as in Measuring W is not too hard, but
assigning the remainder PY — W to

Definition 2.6 (GDP Shares) The income shares of GDP are either capital or economic profits is
notoriously hard, as firms do not tend

e Labor: s; = W/PY to think of their own income from this
perspective.

e Capital: sx = RK/PY
® Profits: s;p = I1/PY

Note that these shares are out of nominal GDP.
Last, let’s clean up and be clear on some notation regarding
growth rates and changes. See A.1 if this is not familiar.
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Definition 2.7 (Notation for growth and change) For any variable X

1. dX is the differential in X, or the change over time. dX is shorthand for
0X /otdt.

2. gx is the growth rate of X and is defined as gx = dX/X.
3. dInX =~ gx.

These definitions are all in continuous time, in the sense that I'm
taking derivatives/differentials. But I'll freely use approximations
of these to discrete time concepts. For example dX ~ X;;1 — X; and
gx ~ (Xp41 — X¢)/ Xt When we get to specific discrete time models
we will be more precise about things.

2.2 Capital accumulation

One part of GDP is investment purchases, which are new capital
goods. Thus investment purchases add to the capital stock. At the
same time, we think/know /assume that a certain amount of the
existing capital stock depreciates every period. It is common to assert
that this takes place at a constant rate (e.g. 5% of the capital stock
depreciates every year), and this rate is denoted by 4.

We can put together a differential equation for the capital stock
using all this information as

dK =1-6K (2.5)

which says that the change in the capital stock (dK) is equal to
the amount of investment done at a given point in time minus the
amount of the capital stock that depreciates. This equation is very
sloppy with time subscripts, which is in part due to the fact that
we're trying to combine a stock (capital) with a flow (investment). A
more tedious but more accurate way to describe this capital accumu-
lation would be

dK(t,t+1) = I(t) — 6K(t) (2.6)

where dK(t,t + 1) is the change in the capital stock from period ¢
to period f + 1, say January 1st 2018 to January 1st 2019. I(t) is the
investment purchases done during period t, say during 2018. 6K(t) is
the amount of the capital stock at time ¢, say on January 1st 2018, that
depreciated from t to t + 1, say during 2018. As I said, tracking the
timing is tedious.

In the notation regarding logs and growth rates from above, if we
divide both sides of (2.5) by K, then we can say that the growth rate
of the capital stock is

I
8K = X o (2.7)

The notation for derivatives and growth
rates throughout the book is explained
in A.1.



2.3 Production

To begin the theory, we need a description of how GDP is produced.
This is where we have to introduce the first assumptions about how
the economy works, although thanks to some recent work these
assumptions are less demanding than one might guess.”

Assumption 2.1 (Production of output) Production has the following
features:

e There are two factors of production, capital (K) and labor (L) which are
used as part of the production process.

o There are an arbitrary number of individual production units (e.g. es-
tablishments or firms) which use capital and labor, and may also use
intermediate inputs purchased from other production units.

® The cost functions (i.e. the cost to the unit to produce one unit of output)
of those production units are constant returns to scale with respect to
capital and labor.

o The total capital used by the production units equals the aggregate capital
stock, Y_; K; = K, and the total labor used by production units equals the
supply of workers, Y; L; = L.

It is worth noting what is not assumed here. We do not have to
assume production units produce homogenous goods. We do not
have to assume competition, much less perfect competition, across
production units. Those units could be monopolists, or some of them
could be part of an oligopoly, while others may in fact be competing
fiercely with one another. We do not have to assume that those units
face the same cost of labor or capital, either. In short, there can be
any arbitrary markup, or wedge between the price and marginal cost
for each production unit.

Given the assumptions, it can be shown that

dinY = exdInK+edInL +e;dIn A (2.8)

where d In x refers to the change in (log) of variable x, and ex and
€1, are the elasticity of output with respect to capital and labor, re-
spectively. A here refers to the level of total factor productivity (or
productivity, for short). The change in log productivity can be broken
down further into terms related to unit-specific technological change
and the allocation of factors across those units, but for the moment
there is no need to specify that breakdown.

Equation (2.8) simply says that the change in (log) output - which
note is equivalent to a percent change for small enough changes - is
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* David Baqaee and Emmanuel Farhi. A
Short Note on Aggregating Productivity.
NBER Working Papers 25688, National
Bureau of Economic Research, Inc,
March 2019

The assumption that there is just one
type of capital, and one type of labor, is
restrictive. It is also not necessary, but
allowing for multiple types of either or
both in the analysis would add tedious
algebra at this point without much
insight. See A.10

The equation for dInY seems simple,
but showing that it in fact holds for an
economy with the few assumptions
shown above is anything but trivial.
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a combination of the percent change in the capital stock (weighted
by €k), the percent change in labor (weighted by €1 ), and the percent
change in productivity.> The fact that dIn A is multiplied by €[,
implies that productivity changes are also weighted by the elasticity
with respect to labor, or that productivity is “labor-augmenting”..

The above equation holds for any changes in K, L, or A, but we
are particularly interested in changes over time. If we simply divide
both sides of equation (2.8) by dt, then we will have an expression
for the change in log output for a change in time, or in other words,
the growth rate. Using the notation introduced in the preliminary
chapter,

8y = €K + €181 +€18A (2.9)

The elasticities will be relevant for our analysis of growth, and they
have some properties that are very useful. I'm going to state these
properties as assumptions, because in these notes I will not be show-
ing how to derive these properties, but they are implications of the
assumptions about production.

Assumption 2.2 (Factor elasticities) Factor elasticities have the follow-
ing properties:

* ex + e = 1, which is a result of the constant returns to scale assumption
for individual units of production.

® ey is equal to input/output weighted share of costs accounted for by
capital, and €1 is equal to the input/output weighted share of costs
accounted for by labor

The first property simply says that if both capital and labor grow

at say, 10%, then output grows at 10% as well (ignoring TFP growth).

Thus there are neither increasing returns to capital and labor at the
aggregate level (e.g. output grows by more than 10% if factors grow
by 10%) or decreasing returns at the aggregate level (e.g. output
grows by less than 10% if factors grow by 10%).

Neither of the properties in Assumption 2.2 imply that the elas-
ticities must be constant over time, or insensitive to the amount of
capital and labor supplied in the economy. However, if we calculate
those input/output weighted shares of costs, they are roughly con-
stant over time. The fact that these are constant over time will allow
us to make several strong assertions about how economic growth
works, so let’s set this off as a separate assumption.

Assumption 2.3 (Stable factor elasticities) The factor elasticities ek
and € are stable over time.

Given all these assumptions, we can do some manipulation of (2.9)

to arrive at an equation for what drives growth in output per capita

*H. Uzawa. Neutral Inventions and the
Stability of Growth Equilibrium. The
Review of Economic Studies, 28(2):117-124,
02 1961; and Charles I. Jones and Dean
Scrimgeour. A new proof of Uzawa’s
steady-state growth theorem. The Review
of Economics and Statistics, 9o(1):180-182,
2008

This does not mean productivity
growth can only be labor-augmenting,
or that it has to be labor-augmenting.
The Uzawa Theorem says that we

need to be able to express productivity
growth as labor-augmenting for our
model to have a BGP. But that does

not preclude capital-augmenting or
disembodied productivity growth. See
A.11

The crude cost share of labor reported
in Fact 1.9 is constant over time, but
that is not necessarily the right measure
of er. A.7 describes how to construct
the proper input/output weighted cost
share for labor, and shows that it is
also roughly constant and similar in
magnitude to the crude cost share.



(as opposed to total output). Subtract exgy from both sides of that
equation, and you have

(1—ex)gy = ex(gx — 8gv) + €181 + €184 (2.10)

Divide both sides of this by (1 — ex) and apply the assumption that
€x + €1 =1, and you arrive at
€

K (ex —gv) + g1+ ga- (2.11)

gY—eL

We can manipulate this equation to the following,

€
8y = égK/Y +38a, (2.12)

where gx/y = gk — &y is the growth rate of the capital/output ratio, to
be clear. This shows that the growth rate of GDP per capita depends
on a combination of the growth rate of the capital/output ratio and
the growth rate of productivity. This relationship holds whether an
economy is on a BGP or not. It is simply a re-arrangement of the
production relationship we started with in (2.9).

There is one interesting note to make about the role of capital
accumulation and economic growth. Equation (2.12) shows that the
growth rate depends on how fast the capital stock grows relative to
output, g,y This is because capital is itself a function of how much
we produce. We would expect the capital stock to increase along with
output no matter what. This expression indicates that growth in the
capital stock only contributes to growth in output per capita to the
extent that it grows faster than output.

It is plausible to connect the elasticities € and ek to the income
shares s;, and sk, but it is important to remember that these are
distinct concepts and there is no strict relationship of the shares
and elasticities except under very restrictive assumptions about
competition.

2.4 Balanced and transitional growth

The above section provided a description of the growth rate of output
per capita, gy, that is valid no matter whether an economy is on or off
a BGP. To proceed we're going to look first at what this production
structure implies about growth for countries that are in fact on a BGP,
and then we'll turn to countries that are not.

We can step in immediately here and draw one immediate conclu-
sion about growth on a BGP.

Conclusion 2.1 (Source of growth on a BGP) Given that the capi-
tal/output ratio is constant on a BGP (gx,y = 0), it is the case that the
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A.g describes how shares and elastici-
ties are related for a given firm.
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growth rate of output per capita on a BGP depends only on productivity

growth, gyBGP =ga.

This is strong statement about what drives growth in the long run.
The growth rate on a balanced growth path is proportional to total
factor productivity growth, and does not depend on the particulars
of how capital accumulates relative to output. When you look back
at Figure 1.1, the stable growth you see for developed economies is
a result of growth in productivity. This doesn’t mean that capital
accumulation doesn’t occur (capital must be growing at the same rate
as output), or that capital accumulation doesn’t matter for the level of
living standards (which we’ll get to), only that it doesn’t matter for
the growth rate of output per capita in the long run.

This result has a corollary implied by the stability of cost shares
and the growth rate.

Conclusion 2.2 (Stable productivity growth on a BGP) Given that the

BGP
y

must be the case that the growth rate of productivity, g4, is also constant on
a BGP.

cost share of labor is constant over time, and g is constant on a BGP, it

When we turn to studying productivity growth in more detail,
this proposition will be an important fact that we will try to match
with the theory. It will lead to some interesting implications for what
drives growth in productivity in the long run. For the moment just
keep in mind that the stability of growth, the capital/output ratio,
and the cost shares impy that productivity growth must be stable as
well.

Knowing how growth works on a BGP, we can say something
about the variation we see in growth rates in the data.

Conclusion 2.3 (Growth differences) Given that g4 appears similar
across countries, observed differences in growth rates must be due to differ-
ences in g /y.

This comes from fact 1.2, which implies that g4 is similar across
developed countries. Knowing that, the conclusion follows from
examining equation (2.12). Variation in growth rates is due to some
countries being “off” their BGP (gx/y # 0) while some are “on” their
BGP (gx/y = 0). Since gk /vy plays such an important role, we're going
to give it a specific name.

Definition 2.8 (Transitional growth) Transitional growth is equal to the
growth due to changes in the capital/output ratio, gg /y.

Growth is denoted as gEGP to make
clear that this is the growth rate along
a BGP. The proposition does not say
that the growth rate is always equal to
g4, as economies may not be on a BGP
(e.g. South Korea or Japan). A second
aside is that this means ¢567 = ¢4 + g1,
or that growth in GDP on a BGP is the
sum of productivity and population
growth.

There is no way to test this proposi-
tion. Productivity cannot be observed
directly. We could assume that produc-
tion happens according to equation
(2.9), and use data on capital, labor,
and cost shares to back out a measure
of ga. But then we’d be assuming this
proposition was true.



2.5 Accounting for growth

We know from 2.12 that growth is either via gx,/y or g4. How im-
portant are each of these components in the data? Figure 2.5 plots
the growth rate of GDP per capita, gy, as well as the growth rate of
g4 over time for a set of relatively rich countries (GDP per capita
above arond $3,000). The growth rates of both are 10-year forward
looking averages (e.g. the data for 1980 is the average growth rate
between 1980 and 1990). This figure also “bins” up data from all the
countries, so what you are seeing in any given year is something like
the average outcome across the countries included.
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The most relevant thing here is that the two series track one an-
other closely. That is, most of growth in GDP per capita can be
accounted for by growth in productivity. We know that’s true along a
BGP, but this figure also indicates that the contribution of transitory
growth when countries are off the BGP tends to be small. The size of
E—IL( 8k /v is just the gap between the two different series.

You can see that more clearly in Figure 2.5, which plots %IZ SK/Y
in the same manner, meaning 10-year growth rates and binned up
across countries. It’s not that transitory growth is zero, at times it
averaged over 1% as many countries were converging to new BGP’s

Figure 2.1: Comparison of g, and g4 in
relatively rich countries over time
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Figure 2.2: Contribution of ex/ergk/y
in relatively rich countries over time
in the 1970s, and it remains positive on average even out to the 2010s,

indicating some shifting between BGPs. But just in terms of size it
isn’t large, leading us to this fact,

Fact 2.1 (Importance of prouctivity growth) Most g is due to produc-
tivity growth, g A, and transitional growth due to gx /vy tends to be small.

This doesn’t mean capital growth is unimportant. What these
figures don’t show is that capital accumulation remains important for
assuring stability around the BGP. No, capital accumulation doesn’t
drive long-run growth, but it does help ensure we stay on or close to
the BGP.



3
The Solow model

The facts regarding growth from the prior chapters indicated stability
in several key variables over time. We were already able to conclude
several things about the BGP just from the structure of production,
but those did not provide any information about why economies
tend towards a BGP. The Solow model is a theoretical structure that
describes that tendency towards stability."

3.1 Transitional growth

The essential point of the Solow model is that transitional growth is
temporary, and that it drives the economy towards the BGP. To see
this, let’s first subsitute in what we know about the growth rate of the
capital/output ratio

SK/Y = 8K — 8y = €L8K — €181 — €L8A, (3.1)

where the second equality follows from the definition of g, in Equa-
tion (2.9), and the assumption about the sum of the elasticities.

To proceed we need to draw in what we know about the growth
rate of the capital stock from Equation (2.7). Using that, we can say

that
1Y

SK = YK~ J, (3-2)

where the first fraction on the right is the investment share of GDP
and the second is the (inverse of) the capital/output ratio. We know
from Fact 1.5 that the investment share is stable over time. Let’s
introduce a little new notation here

S = ? (33)

which should be read as the share (s) of GDP that goes to investment
(I). Given the data, we're going to assume that sy is a constant, at
least for the time being.

* Robert M. Solow. A contribution to
the theory of economic growth. The
Quarterly Journal of Economics, 70(1):pp-
65-94, 1956

Traditionally, the variable s was used
for I/Y, and was understood to mean
“savings”. I don’t like this terminology,
as “savings” has more common usages
that do not mean anything like the
investment share of GDP. Thus the
interpretation of s here as “share of
GDP”.
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Combine the common terms involving gx and the definition of s;
with Equation (3.1) and we arrive at

Y
SK/Y = €L (SIK —0—81L— 8A> : (3-4)

When the capital /output ratio is high, then the growth rate of capital
is low because the absolute amount of investment spending done
(s1Y) is small relative to the amount of capital that is depreciating.
When the capital/output ratio is small, the growth rate is high be-
cause the investment being done is large relative to depreciation.
Beyond that, the growth rate of the capital/output ratio depends
negatively on g1 and g4 because these things create growth in Y over
and above the growth attributable to additional K.

This gives us the ability to draw several conclusions.

Conclusion 3.1 (Inverse relationship of growth and capital/output)
Transitional growth, g sy, is inversely related to the size of the capi-
tal/output ratio, K/Y.

We just established above the logic of why this conclusion holds.
This follows from examining the equation (3.4). Furthermore, if you
take the limit of this growth rate as K/Y goes to zero, then gx /vy goes
to infinity. We’re not particularly concerned with this as a real-life
case, but it is important because it establishes that gx/y is definitely
positive when the capital/output ratio is small. If you take the limit
of the growth rate as K/Y goes to infinity (again, not a real-life case
but useful to illustrate things) then gx,y ~ —er(6 + g1 +8g4) <0, a
negative growth rate. This leads to a new conclusion.

Conclusion 3.2 (Existence of a BGP) There must be a level of the capi-
tal/output ratio, call it (K/Y)BGP, at which gg /vy = 0.

Because as we just established gx,/y smoothly decreases with K/Y,
and eventually turns negative, it has to be the case that at some point
8k/y = 0. This is most obvious when looking at Figure 3.1.

Variation in growth rates is due to variation in gx,y, and variation
in gg /v is due to variation in K/Y itself. But if you examine Figure
3.1 or equation (3.4) you can see that gg,y will evolve over time
as the capital/output ratio changes. We can make the following
conclusion.

Conclusion 3.3 (Transitional growth is temporary) The capital/output
ratio is stable around (K/Y)BGP, meaning that no matter where the K/Y
ratio starts, it will always end up at (K/Y)BCY, and gy /v will always end
up at zero in the long run.

Ikry

(K/Y)BGP
o, \
1 2 3 a 5

K/Y

Figure 3.1: The inverse relationship of
growth in the capital/output ratio and
the level of the capital /output ratio.

As we'll see in the next section, it
is really the gap between K/Y and
(K/Y)BCP that dictates g /y-



THE SOLOW MODEL

This statement is a direct result of the negative relationship be-
tween gg/y and the level of K/Y from conclusion 3.1. That negative
relationship ensures that K/Y is always being pushed towards the
BGP level. When K/Y < (K/Y)BGP, gk/y > 0, and hence the capital

output ratio moves closer to to (K/Y)BCP

, and then the process con-
tinues until gx/y = 0. You can run the same logic in reverse if the
capital/output ratio is above the BGP level.

Conclusion 3.3 explains fact 1.3, which said that growth rate
differences were temporary. This showed up most clearly when
looking at countries like Japan, South Korea, and Germany, who each
had very high growth rates for several decades but that high growth
rate eventually dissipated as they reached their BGP. What conclusion
2.3 tells us was that their abnormally high growth rates were due to
transitional growth, gx/y. And conclusion 3.1 suggests that this high
transitional growth was because those countries had capital/output

ratios below their balanced growth path value of (K/Y)BCP.

3.2 The level of the BGP

What is apparent is that the level of K/Y is important in determining
the size of transitional growth, and how much it differs from the BGP
value of (K/Y)BGP. 1t is important to keep in mind that the value
of (K/Y)BGP need not be identical across countries, as was seen in
Figures 1.4 and 1.4. Transitional growth arises in a particular country
because its actual capital/output ratio differs from its own, specific
( K / Y) BGP .

So what determines that specific BGP capital/output ratio? Go
back to equation (3.4), set gx/y = 0, and solve.

Conclusion 3.4 (Level of capital/output on a BGP) On a balanced
growth path, the level of the capital/output ratio is

(5o 09
Y gA+grL+96 ’

The capital/output ratio on a BGP depends on how fast capi-
tal accumulates (the investment share) relative to how fast capital
depreciates (§) combined with how fast output grows (TFP and

population growth). The intuition behind the investment share is Putting numbers on this equation, s;
is around o.20 for developed countries,

straightforward. If an economy commits a greater share of its output
& y & p and g4 is around 0.018, based on

to building capital goods, it follows that the stock of capital will be conclusion 2.1. If depreciation runs
large relative to output. And the fact that the capital /output ratio around 0.05, and the population
growth rate is around o.01, then the

depends negatively on the depreciation rate makes sense as well. The capital /output ratio on the BGP

37

faster that capital breaks down, the smaller will be the capital stock should be about 2.56, which is a decent

relative to output. Population growth, g;, is negatively related to the last chapter.

approximation of what was shown in
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the capital /output ratio because expanding the number of people
(workers) expands output without expanding the capital stock, and
hence it makes output larger relative to the capital stock.

What is not as obvious is why the growth rate of productivity has
a negative effect on the capital/output ratio, but this is similar to
the effect of population. Higher productivity makes output higher
without affecting the size of the capital stock, so faster productivity
growth decreases the capital /output ratio.

Regardless, transitional growth is related to how far away the
actual capital /output ratio is from the (country-specific) (K/Y)BGP
described in equation (3.5). We know from conclusion 3.1 that the
farther K/Y is below (K/ Y)BGP , the larger is transitional growth

gk,/y- What this doesn’t tell us is why there are countries that have a And symmetrically, the farther K/Y
is above (K/Y)BCP, the smaller is
transitional growth.

capital/output ratio below their BGP level, but we will take this up in
the next section.

Before moving on, it is worth establishing the close connection of
the capital/output ratio and the level of output per capita on a BGP.
Intuitively, it makes sense that the level of output per capita should
depend positively on the capital/output ratio, but we can make the
connection exact.

Go back to equation (2.12), and multiply both sides through by dt

to recover
€
dlny = e—Kdan/Y—f—dlnA, (3.6)
L
which is just a manipulation of the original equation (2.8) describing
production of GDP. Integrate both sides of this equation, and you get This integration relies on the crucial
assumption 2.3 that ex and € are
€K constant, which is consistent with the
In y= g InK/Y +InA+C, (3 '7) data. But if those elasticities changed as

K/Y or A changed, then this would not
where C absorbs all the constants of integration that arise. This be as simple a process.

equation is effectively a production function, in log form. It holds
for the economy whether it is on a BGP or not. But we can use it to
describe the path that output per capita follows on a BGP.

The capital /output ratio is constant on a BGP, and described by
(3-5). We also know that on a BGP productivity grows at a constant

rate, meaning that In A is a function of time. Put that all together and Constant growth of A can be written
mathmetically as In A(t) = InA(0) +
gat, where A(0) is some arbitrary
baseline level of productivity.

we have

Iny(#)PCP = K (S’I)+1AO+ 3 8
ny(t) o ™M giFars) TnAO) 84 (38)
Note that I've indicated this is Iny(t)5¢?, as output per capita on a
BGP is a function of time, given that productivity is growing over
time. I've also set the value of C to zero, without loss of generality, as
we can adjust the baseline level of productivity, A(0) to incorporate
that.



Equation (3.8) tells us that a country with a higher BGP capi-
tal/output ratio should have a higher level of output per capita,
holding productivity constant. This conforms to the rough positive
relationship between capital/output and log GDP per capita demon-
strated in Figure 1.4 and Fact 1.8, although that data does not meet
the “holding productivity constant” standard. As the capital/output
ratio depends directly on the investment share in GDP, this also
means our description of a BGP conforms to the rough positive re-
lationship of investment share and log GDP per capita in Figure 1.3
and Fact 1.6.

3.3 The Golden Rule

The BGP’s imply something about consumption.? No matter what

c(t)PCT = (1 —sp)y(1)*CF. (3-9)

Given 3.8 you can see there is a trade-off here. The higher is s;, the
higher is GDP per capita along the BGP. But the higher is s, the
smaller fraction of that gets to be consumed. From the consumption
perspective, it is not ideal to maximize sy (e.g. set it equal to one).

We can set a useful benchmark here, which is finding the s; that
maximizes c(t)BCGP. Take the derivative of consumption with respect
to s; and set equal to zero, and you get

a t BGP
y(0Pe 1 (1) P (3.10)
aSI
which you can resolve to
BGP
Iy(t) 51 SI (3.11)

ds;  y()BGP ~ T—s;

In other words, the elasticity of GDP per capita along the BGP with
respect to sy is going to tell us about how to set s;. If GDP per capita
is very sensitive to sy, then it pays to have a high s, and vice versa.
From 3.8 we can read off this elasticity quite easily which gives us

Conclusion 3.5 (The Golden Rule) The “Golden Rule” level of s; that

maximizes cBCP is

S?R = €. (3.12)
This implies that the thing that maximizes consumption along a BGP
is spending the fraction of income equal to the elasticity of output
with respect to capital on building new capital. It ties the importance
of capital to the amount that is invested in new capital.

From Figure 1.5 we know that labor’s share of costs is between 0.5
and 0.7, which should be an estimate of €, and that makes ex some-
where between 0.3 and o.5. From Figure 1.3 is looks like observed s;
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2 Edmund Phelps. The golden rule of
accumulation: A fable for growthmen.
The American Economic Review, 51(4):
638-643, 1961

There is nothing about this that is
“optimal” in the sense of maximizing
utility or anything. This is purely a
mental benchmark.

You'll see in Chapter 7 that the only
viable accumulation rate is below sIGR
once we allow for individuals to opti-
mize their consumption/accumulation
choice. It happens because people are

impatient.
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are all below 0.3, so in that sense the data tell us that economies are
below the Golden Rule accumulation rate.

3.4 Transitional growth

Last, compare this expression for the level of output per capita
along a BGP to the expression for actual output per capita from (3.7),
presented again here with explicit time subscripts,

_ ek, (K(H)
Iny(t) = o In (Y(t)) +1In A(0) + gat. (3.13)
If you compare equation (3.13) to (3.8), you'll see the only differ-
ence is the capital /output ratio. We can use this comparison to make

one other conclusion.

Conclusion 3.6 (Transitional growth and output per capita) Transitional

growth, gk /y, depends positively on the difference Iny(t)BCP —Iny(t).

The farther actual output per capita is below its balanced growth
path, the faster a country grows. This follows from the fact that The conclusion also means that the
Iny(t)B¢P and Iny(t) only differ because of the capital/output ratio, f?rtt};elr flCt‘:ial futle‘:t pi; C?}E’italis al;()i‘:e
and the farther actual K(t)/Y(t) is below (K/Y)BCP, the higher is grso‘;; €6 BTOWE et The STone
gk/y- This isn’t an absolute statement about the level of output per
capita and the growth rate. The conclusion tells us that transitional
growth is associated with countries that are poor relative to their own
balanced growth path.

The prior sections established that transitional growth arises
because the capital/output ratio isn’t equal to the balanced growth
path value, but that doesn’t explain why this might occur. Given that
the natural dynamics of the economy always push the capital/output
ratio towards the BGP level, you might expect that all countries
should be near that value at all times. But we can consider several
different situations where something exogenous happens that creates
a gap between K(t)/Y(t) and (K/Y)BCP, and hence between Iny(t)
and Iny(t)BCP.

Germany is a classic example. K(t)/Y(t) fell because of World War o

IT, while s;/(ga + g1 + 6) remained fundamentally the same. This

in turn meant that actual output per capita, Iny(t), was less than the T Aime

BGP The result was the miracle Figure 3.2: An example of a shock

to the K/Y ratio that occurs in 1960.
The dark line traces the actual path of
3.2 shows what happened, and you can compare that to the actual output per capita.

BGP level of output per capita, Iny(t)
growth of the 1950s and 1960s. In terms of output per capita, Figure

data for Germany in Figure 1.1. It obviously isn’t a perfect match,
but the broad outline of the model is correct. Note that this drop in
K(t)/Y(t) was completely exogenous from the perspective of the
Solow model; nothing in our equations could have predicted World



War II. But the model does allow us to explain what happened in
Germany given that exogenous shock happening.

A different case to consider is South Korea after 1960. There, it
doesn’t appear that there was a distinct fall in K(¢)/Y(t), as we
do not see a distinct fall in Iny(t). Rather, there must have been
an increase in s;/ (g4 + g1 + ¢). The BGP itself moved, not the
actual capital/output ratio, and South Korea was in a position where
Iny(t) < Iny(t)BP, and so it had the rapid growth observed in the
1970s, 1980s, and into the 1990s. Figure 3.3 plots the stylized path,
which again isn’t an exact match, but gets the right idea.

Again, the South Korean case arose because of an exogenous
shock, this time to s; or g, (or possibly A(0) as we’ll discuss below).
Nothing in the model could have predicted how or why South Ko-
rea enacted policies or changed behaviors around 1960 to create
that shock to the BGP capital /output ratio. But conditional on it
occurring, the Solow model can explain what happened afterwards.

Those examples are useful because we see the whole evolution
of transitional growth, from large values of g,y right after the
exogenous shocks, and then the drop of gx,y as the economies
approach their balanced growth path. A different kind of example
is China, where we see the distinct change around 1980, and an
acceleration of the growth rate. The Solow model tells us that their
transitional growth will be high for a while, but that eventually
growth will slow down towards g4 as their capital/output ratio
reaches the BGP level. But nothing about the Solow model can
explain the political and historical reasons Deng Xiaoping initiated
market reforms in 1980. And because China appears to be in the
middle of this transitional growth, it may well turn out that we are
wrong about what happens in the future. We're assuming it will
follow a path similar to those of Germany, South Korea, or Japan.

The logic behind a shock to baseline productivity, A(0), is similar
to the examples given above, but it takes a little extra work to see
why. If A(0) rises exogenously, we know that nothing happens to
(K/Y)BGP. And if you look at equations (3.13) to (3.8) you'll see that
they both appear to shift up the same amount.

But actual output per capita doesn’t jump by this full amount
because the productivity shock also lowers the actual capital/output
ratio. The capital stock itself is unchanged, but output goes up due
to higher productivity, and thus K(t)/Y(t) falls. The net effect of the
rise in productivity and the drop in the capital/output ratio will be
for output per capita to rise, but not enough to reach the new BGP.

To see this, go all the way back to to the expression for changes in
output per capita in equation (3.6), and manipulate that as follows.
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1940 o _ww_wm w0
Figure 3.3: An example of a shift in

the BGP that occurs in 1960. The dark
line traces the actual path of output per
capita.

It is possible to derive an exact pre-
diction for Iny(t) over time using the
Solow model. It is somewhat tedious to
work out, and is best implemented on
a computer, not pencil and paper. See
A.15.

A different question is what hap-
pens when g4 changes. This becomes
involved, as it changes the BGP capi-
tal/output ratio and the growth rate.

You can get this same logic from
looking back at the original equation
(2.8). This already shows us that the
net effect of a productivity change on
output is e1dIn A.
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diny = E—Kdan/Y+dlnA
L
= Z—K(dan—dlnY)+dlnA
L
- E—K(dan—eKdan—eLdlnL—(—:LdlnA)—|—d1nA.
L

You can see here the two effects of a shock to productivity. First,
inside the parentheses is the negative effect on the capital/output
ratio. But notice that when you multiply this out you get —exdIn A.
Second, at the end you get the positive productivity effect, and notice
that this is simply d1n A. So the raw productivity effect is larger in
size than the negative effect working through capital /output, and on
net the change in output per capita is e;dIn A.

Figure 3.4 shows what this looks like over time. At the time of the
shock output per capita jumps partway up towards the new BGP, and
then after this follows a normal, slow transition path. The growth
rate of output per capita in that period during the shock to A(0)
would be massive, and then the growth rate would taper off towards
the same g4 that existed before.

Going back to the example of South Korea or China, this could be
an additional explanation for their rapid growth. Rather than a jump
in investment share or a drop in population growth (although both
occurred in those countries), there could have been a significant jump
in baseline productivity. One might argue that the market reforms of
China were really a productivity increase, perhaps. But again, we’d
have to investigate the actual history and data from these countries to
decide what drove their rapid transitional growth. The Solow model
tells us where to look for this evidence, but doesn’t tell us why things
changed in the first place.

3.5 Implications

Given that we observed countries on balanced growth paths, we were
able to make some powerful conclusions about what drives growth
in the long run. In particular, conclusions 2.1 and 2.2 tell us that the
growth rate depends on productivity growth, g4, in the long-run,
and not on something like the investment share in physical capital.
This will motivate the deeper study of productivity growth going
forward.

The Solow model gave us a framework for understanding why
countries end up on a BGP at all. The way that capital accumulates
ensures that the capital/output ratio always returns to some BGP
value eventually, which by necessity drives the growth rate back
to g4. This allowed it to make sense of the fact that differences in
growth rates across countries were due to transitional growth, gx/y,

New BGP A

1960

1980 2000 2020 2040

Time

Figure 3.4: An example of a positive
shock to A(0) in 1960. The dark line
traces the actual path of output per

capita.

There is some interesting evidence from
East Asia that suggests productivity
improvements were not the major factor
in their rapid growth.
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and are temporary. The additional value of the model was that it
gave us clues for why some countries found themselves “below”
their balanced growth path at some point, and why there was any
difference in growth rates to begin with.






4
Investment in capital

One of the key facts regarding growth was that the investment share
of GDP, sj, was stable over time. The consumption share of GDP,
which we could call s¢, was also stable over time. These facts were
central to the understanding of balanced growth; the definition of
balanced growth included consumption growth matching GDP
growth, implying sc was constant. The stability of the capital/output
ratio was dependent on a stable value for s;.

But those shares represent choices about how we allocate spending
in the economy. There is nothing that forces these shares to be stable.
What we need to understand, then, is why the households and firms
in the economy chose to keep s¢ and s stable over time. In some
sense, this is just a standard expenditure problem. But the choice
on how much to spend on consumption versus investment is not
quite the same as deciding how much to spend on different types
of consumption (e.g. shirts versus food), as investment spending
buys products that will deliver consumption value in the future. The
investment products can be used to produce consumption goods and
services (e.g. a factory that packages food), or are themselves durable
consumption goods (e.g. a house).

This means there is an inherent inter-temporal aspect to the choice
about how spending on consumption versus investment. We thus
have to think harder about how to measure the relative price of
consumption versus investment. There is the actual cost of the in-
vestment goods themselves today which matter, but then we have
to account for the fact that the investment goods will then generate
consumption goods (or can be used for consumption themselves) in
the future. That return on investment spending is going to be a key
component of the decision to buy investment goods. And because
of that return, investment goods are going to look relatively “cheap”
in terms of pure consumption goods. At the same time, the return
we get from investment goods comes in the future, not today, and we
probably want to take into account that time delay.
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Beyond the relative price, we cannot just focus on current income
when thinking about the investment/consumption decision. If we
know that income will be larger tomorrow regardless of what we do,
then we might not worry as much about buying investment goods
that deliver consumption value in the future. We can complicate that
more by realizing that income tomorrow probably depends on how
much investment spending we do today, because that investment
spending determines the capital stock we have. Regardless, we’d
expect that the investment/consumption decision depends on our
projection of future income, not just the income we have today.

We can build up a model of the choice over how much to consume
and invest, similar to how we built up a model of how GDP was
produced. Mapping that model to the data, we’ll be able to draw
some conclusions about how the preferences for consumption work
at the aggregate level. Given those, we will be able to build up an
explanation for why the investment and consumption shares appear
stable in the long run.

4.1 The return on capital

Before we build any more theoretical structure, let’s establish some
basic facts surrounding the return on capital and the relationship of
that return to the capital/output ratio.

We run into an immediate problem here, similar to the one in
trying to measure real GDP growth. We do not observe the actual
physical output of each unit of capital, and so we need some way to
infer the return on capital from things we do observe. We'll use the
financial returns from owning different types of capital, making the
assumption that people would only own this capital if it had some
real return, and that over the long run the financial returns will be
informative about the real.

Evidence from over a long period of time on the rate of return
to different types of capital is now available for a set of advanced
economies.” Figure 4.1 plots the return to housing, equities, and
government bonds for the United States. The returns are the average
of the yearly returns for five-year windows.

There are certainly fluctuations in the rates of return over time,
and if the data were plotted on an annual basis, the fluctuations
would be more pronounced. However, despite the fluctuations, there
does not appear to be a distinct trend in the return of any capital
type over time. The rate of return on housing over the whole course
of the data centers around 5-6%, the average for equities is around
8%, and the return on safe assets is around 2.5% over this whole
period.

Financial returns are in nominal terms,
so they are deflated by the consumer
price index to recover the financial
return in terms of consumption goods.

* Oscar Jorda, Katharina Knoll, Dmitry
Kuvshinov, Moritz Schularick, and
Alan M Taylor. The Rate of Return on
Everything, 1870—2015*. The Quarterly
Journal of Economics, 04 2019
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The fluctuations for the United Kingdom, in Figure 4.1, are more
dramatic than in the United States. But a similar pattern emerges
that the rate of return on equities and housing do not have a distinct
trend over time. The averages for the three types of capital are not
that much different for the U.K,, either, at around 6% for equities, 5%
for housing, and 1.7% for safe assets.

We can use the patterns in Figures 4.1 and 4.1 to establish another
broad fact.

Fact 4.1 (Stable rates of return) The rates of return on different types of
capital (housing, equities, government bonds) are stable in the long run.

This stability in rates of return gives us our first clue about why
investment shares were stable over time. We think that the rate of
return is an important element of why people purchase investment
goods in the first place. If the rate of return were rising steadily over
time, we might have expected even more investment purchases (and
an increase in sy), or perhaps even less given that purchasing fewer
could still yield a big return. Regardless, with a stable return, it
makes some intuitive sense that s; would be stable as well.

Despite the facts on financial rates of return, we’d still like some
assurance that we can connect this to the evidence we have on capital

Figure 4.1: Rate of return on housing,
equities, and government bonds, USA,
1980-2016. The average return from
each 5-year period (e.g. 1970-1974) is
shown.

Similar plots for other developed
countries can be done, and the overall
story remains the same: fluctuations
in the rate of return on housing and
equities, but no overall trend.
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5—year mean rate of return

1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

Year

and output. The rate of return on capital should depend positively
on its marginal product, and in the theoretical setting we laid out
in Chapter 3 the marginal product of capital is proportional to the
average product of capital. That means the rate of return should be
negatively related to the capital /output ratio, K/Y, which is just the
inverse of the average product of capital.

Using all 16 countries that Jorda et al. (2019) provided data for,
Figure 4.1 summarizes the relationship of the rate of return on equi-
ties with the capital/output ratio. The figure shows the relationship
net of both country and year effects, meaning that the relationship is
not driven by differences in the average returns of countries or years.
Regardless, this is not very promising, although there is a slight neg-
ative relationship. There is a lot of noise in the return on equities
relative to the size of the capital/output ratio.

However, if we examine Figure 4.1, then the negative relationship
of the rate of return on housing and the capital/output ratio is quite
strong. Again, this figure shows the data net of country and year
effects. This gives us a little more hope that the rate of return data
are telling us something real about the return on capital we’re using
in the theoretical model. Furthermore, recall that housing (and
structures) make up the vast majority of the capital stock in nearly all

—6— Housing
—8— Equities
-<-+ Govt bonds

2010 2020

Figure 4.2: Rate of return on housing,
equities, and government bonds, United
Kingdom, 1980-2016. The average
return from each 5-year period (e.g.
1970-1974) is shown.

This is a consequence of the diminish-
ing marginal product of capital, which
was reflected in the fact that ex was less
than one.

Controlling for the country and year
fixed effects in this way essentially
“de-means” the data for each country
and year.
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Figure 4.3: Relationship of rate of

return on equities to the aggregate
countries, and so the return on housing is quite close to the overall capital/output ratio for 16 countries
1950-2015. This is the residual after
removing both country and year fixed
Despite the noise in the figures, we're going to establish this as a effects.

return on capital, of which equities are but a small fraction.

further fact about growth.

Fact 4.2 (Capital/output and returns) The rate of return on capital has a
(loose) negative relationship to the capital/output ratio.

This fact is what we’re going to use to link our theoretical findings
about the capital/output ratio to the consumption/investment de-
cision, which depends on the rate of return on capital. It will help
us establish why s; is stable in the long run. One very important
caveat about Fact 4.2 is that it is not a causal claim, only an observa-
tion about a correlation. That is, the fact suggests that capital /output
ratios are informative about returns on capital, but does not prove
that if the capital/output ratio were to rise (for example), that the
return on capital must fall.

All that said, from our model of production we have established
how rates of return and the capital/output ratio could be related.
From 2.6 we had that the share of capital income in GDP was sx =
RK/Y, which if we manipulate implies the following:
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Assumption 4.1 (Gross rate of return) The gross rate of return on
capital is
Y

R = SKE (4.1)

From an individual perspective what matters is the net rate of re-
turn, which allows for the fact that in using capital (or renting it to
someone else who uses it) some of that capital depreciates at the rate
J.

Assumption 4.2 (Net rate of return) The net rate of return on capital is

L _SKY 0K _ Y

T =Sk 0. (4.2)

These definitions draw a distinct relationship between rates of return
and K/Y. The reason the data above is only indicative of these rela-

tionships is that the data are about market returns on financial assets.

While in principle those financial assets represent ownership stakes
in real capital (e.g. shares of a company represent ownership of that
company’s capital stock) the exact nature of ownership is not always
obvious (e.g. investor protections and rights vary by type of share)
and there is substantial risk and uncertainty due to trading in those
financial assets. It is probably best to think of these definitions of R

Figure 4.4: Relationship of rate of
return on housing to the aggregate
capital/output ratio for 16 countries
1950-2015. This is the residual after
removing both country and year fixed
effects.



and r, and their relationship with K/Y, as representing the baseline
or underlying rates of return that all these other considerations build
off of.

4.2 The capital accumulation choice

We can establish some conditions on how s; can act that will support
the stability of the Solow model and ensure that s; will be constant
in the long run. That will help point us towards the nature of the full
decision process that we will go into in the next chapter.

That decision process is based on people’s choice of what to
consume versus what they choose to accumulate, in essence meaning
they pick s¢ and s;. But the decision problem we’ll solve is most
readily expressed in terms of the growth rate of consumption, so let’s
connect that here to see why we care about it.

It’s the case that s; =1 — s¢, and s¢ = C/Y, so

ds; = —dsc = —(dC/Y —scdY/Y) = —sc(gc — gv) = sc(8y — gc)-
(43)

Any change in sy can be connected via this to the growth rate of
consumption relative to the growth rate of GDP. Here it helps if you
flip around to the income defintion of GDP, and then gy means the
growth rate of income. Therefore the change in s; will be positive if
consumption grows slower than income, and the change in s; will be
negative if consumption grows faster than income.

Along a balanced growth path we want s; to be constant, so we
want ds; = 0, which means something that should not be surprising,
that gy = gc, or consumption grows just as fast as income. That’s
already something we established was part of a BGP. So in that sense
saying sj is constant on a BGP was already a necessary condition of
saying that gy = gc. Or if you like, these are just two ways of saying
the same thing.

But that still leaves the question of the choice of g¢ that individu-
als make. And there are a few specific questions we can think about.

1. Under what conditions does it make sense that when K/Y is at
steady state they’d choose to set gc = gy and have s; be constant?

2. Under what conditions does it make sense that When K/Y is
not at steady state, they choose to set gc (and/or sj) such that the
economy moves back towards steady state?

3. Under what conditions does it make sense that they choose s; > 0
at all?

For the rest of this chapter we will talk about the first question, and
next chapter we’ll take on the second and third, which is far more
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complicated. Remember, we see in the data that economies work in a
way to support the BGP. We're not asking if people will act this way.
We're asking why they act this way.

4.3 The consumption decision

We need some additional structure to think about the consump-
tion decision and assess whether it supports a balanced growth
path. As mentioned at the opening of this chapter, the consump-
tion/investment choice is inter-temporal in nature, and so looks a
little different than a static choice problem over how much pizza
and beer to purchase. In the case of the consumption/investment
decision, we think of people getting utility from consumption goods
today and from consumption goods tomorrow (or next quarter or
nexdt year). Investment goods purchased today are only valuable to a
person in the sense that they provide consumption goods tomorrow.
So our inter-temporal choice problem is really about choosing how
much to consume today and tomorrow, where investment spending
today is just the mechanism that people use to “buy” some extra
consumption tomorrow. For a more concrete example, think of in-
vestment spending on housing, meaning new construction. I might
spend money today building a house - buying an investment good -
for the purpose of enjoying the consumption value of living in that
house tomorrow.

The choice problem should thus concern itself with consumption
today and tomorrow, and we can back out the implications for in-
vestment spending. As with any typical choice problem, we’d expect
that people would act until there was no way to increase their utility.
Let’s think about a household who has consumption of ¢; today, and
consumption of ¢y tomorrow

How would their utility change if they made a tiny change, dc,
to consumption today? From today’s perspective, they would ex-
perience a change of U’(c;)dcy to their utility, where U’(c;) is the
marginal utility of consumption today. If dc; > 0, then their utility
would go up, and if dc; < 0 their utility would go down. U’(cq)
captures by how much their utility would change in either direction.

If they did make this dc; change to consumption today, what
happens tomorrow? Imagine that dc; < 0, so that they spent less
today. They could take that money and buy investment goods, and
this would give them —dc(1 + ) in consumption tomorrow. That
(1+r) is the return on investment goods, and the evidence presented
in the prior chapter gives us an idea of how big of a return that might
be. The negative sign on —dcq (1 + r) reflects the fact that lowering
consumption today dc; < 0 means we have more consumption
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tomorrow —dcqy > 0.

What is the effect on utility of having that additional dcq (1 + 7)
to consume? That depends on the marginal utility of consumption
tomorrow, which is U’(c2) /(1 + 0). The U’ (cz) term is similar to the
one today, but this marginal utility is divided by (1 + ). This term
reflects the fact that we expect people to discount the future, perhaps
because they are impatient, so that the marginal utility tomorrow is

scaled down by the factor (1 + 9) . A value of 6 of, say, 0.05, would im-
ply that utility tomorrow would be

. . . . 1/(1.05) = 0.952 of the utility today for
which given our assumption that the person chose c; and ¢, to maxi- the same amount of consumption.

We can look at the total effect on utility of this proposed change,

mize their utility, should mean it is impossible to increase their utility,
or that

u/
U'(cy)dey — : _(:29) de1(1+7) =0.

This can get re-arranged to

U’(Cz) . 1+6
Uf(c) 1471

(4-4)

which looks a lot like the standard condition that the ratio of marginal
utilities is equal to the ratio of “prices”. Here, the relative price of
consumption tomorrow to consumption today is (1+6)/(1+7r). If
8 > r, then tomorrow is “expensive” relative to today, because the
discounting of utility tomorrow is high and/or the rate of return on
investment goods is low. In this case, we’'d get that U'(c2) > U'(c1),
which would imply that c; < ¢y, or that the person would consume

more today than tomorrow. You can work through the reverse logic This doesn’t mean they don’t buy
investment goods at all. The actual

. . . . . purchase of investment goods would
sive relative to tomorrow given a low discount rate and/or a high depend on how big their income today

rate of return. was relative to their choice of ¢;.

when 6 < r, and see that this implies ¢; < ¢y, as today looks expen-

4.4 Consumption along a BGP

It’s possible to do a surprising amount of analysis with this simple
relationship. Recall that what we’re trying to do is establish why
sc and sj are constant, which is equivalent to explaining why the
growth rate of consumption is constant (and equal to the growth rate
of output). Denoting g. as the growth rate of consumption per capita,
we could write c; = (14 g¢)cg.

Using this, we can manipulate the marginal utility of consumption
tomorrow. So long as g, isn’t very big, then

U' (14 ge)er) = U'(c1) + U"(c1)e1ge

where U"(cq) is the second derivative of utility, and it tells us how
much the marginal utility of consumption changes when consumption
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changes. Diminishing marginal utility implies that U"(c1) < 0. If we This approximation is from a Taylor
series expansion of marginal utility
around the point c;. See A.2 for a
u” ( Cl ) ¢ 1+ 0 refresher on Taylor expansions.

U'(cy) =14y

put this approximation to work in equation (4.4), we get

1+

To go further, we're going to manipulate the “price” ratio as well. For
small values of 6 and r, it holds that

140
1+7r

Put all this together and we get

~14+6—r.

sy | ws

ge={r=9) [ u(c1)er

This expression looks ugly, in particular the part in the brackets,
but that is going to have a straightforward interpretation. Given
that U (c1) < 0, that bracketed term is positive. Before focusing
on that, consider what this equation tells us. It says that the growth
rate of consumption depends on the relative size of r and 8. When
r > 0, gc > 0, which is just a restatement of what we said above. The
opposite case, with r < 6, implies that g. < 0. The bracketed term
just scales how big of an effect the difference in rates of return and
discount rates have on consumption growth.

To go forward, let’s get some idea of what that bracketed term
involves.

Definition 4.1 (Intertemporal elasticity of substitution) The intertem-
poral elasticity of substitution (IES) is defined as

—U'(c) —dInc

IES = Tite)e = amui(o)

and measures how sensitive consumption is to a change in the marginal
utility of consumption.

The IES captures how willing people are to change their con-
sumption behavior in response to a change in marginal utility. The
change in marginal utility, based on the choice problem outlined
above, would depend on the change in relative price, so the IES tells
us how sensitive consumption behavior is to a change in the price of
consumption today versus consumption tomorrow.

4.5 Conditions on stability

Now, under what conditions does it make sense that people choose
to set gc = gy along a BGP? What's necessary for this all to hold
together?
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Conclusion 4.1 (Constant IES) Given that the rate of return on invest-
ment goods, r, is stable on a BGP, that the growth rate of consumption, gc,
is stable on a BGP, and the assumption that the discount rate 6 is constant,
it must be that the inter-temporal elasticity of substitution (IES) is stable
along a BGP.

This comes from examining equation (4.5), and applying what we
know from the data about rates of return and consumption growth.
The one additional assumption is that the discount rate 6, as a funda-
mental preference parameter, is constant over time. We're assuming
that people are consistently impatient. The combination of these facts
and assumptions means that the IES must be stable along a BGP as
well. Apparently the willingness to adjust consumption behavior
in response to relative prices did not change as the absolute size of
consumption grew over time. A constant IES is what rationalizes the
consumption decision with the BGP.

We can go even further than this, and establish something that will
seem entirely too exact to describe the real world.

Conclusion 4.2 (Balanced growth preferences) Let the IES be equal to
a constant, so that —U'(c)/U" (c)c = 1/0. Then the utility function over
consumption in any given period must be of the form

_ Cl—a
T 1-0'

Proving this conclusion holds is a little tedious mathematically, but

U(c)

(4.6)

the intuition is not too hard. A constant IES means that no matter These preferences are referred to
how big consumption is, every time consumption grows by 1%, as Constant Relative Risk Aversion
5 . . p y P & y e (CRRA) preferences as well. This
the marginal utility falls by some constant percent. That means form of preferences also implies that
marginal utility has to be a power function of consumption, as in risk aversion does not change as the

absolute size of ¢ changes. See A.17.

U'(c) = ¢ 7. Integrate both sides of this and you get the preferences
in the conclusion.

These are called “balanced growth preferences” because they are
the only form for preferences that necessarily will match the con-
sumption behavior we see. If you change something fundamental
about the structure of the economy here, say by adding something
different about how people discount time, then you can break the
need to have this exact form of preferences. But these are the stan-
dard in a model of the economy because they support the stability of
the BGP in a typical setting.

We can go further in establishing conclusions about the rate of
return along a balanced growth path.

Conclusion 4.3 (Rate of return and time discounting) Given that

there is constant positive growth in consumption along a BGP, it must be

BGP

that the rate of return r°>" is greater than the time discount rate 0.
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This is easy to establish from equation (4.5), which shows that the
sign of consumption growth depends on the size of r relative to 6.
Positive consumption growth requires r > 6. Beyond that, we know
that the growth rate of consumption along a BGP must be g = gy,
as this ensures that the share of consumption in GDP, 5., remains
constant as well. From conclusion 2.1 that g, = g4, we can put the
following conclusion together.

Conclusion 4.4 (Rate of return on the BGP) Given that sc is constant
along a BGP then the rate of return along a BGP is 1367 = 0 + g 4.

This gives us a way of understanding the forces that determine the
rate of return. First, the rate of return depends on the discount rate
8, which recall captures how impatient we are. To get people to buy
investment goods at all, the return on them must be high enough to
overcome their natural impatience. So the higher is 6, the higher the
rate of return on the BGP will be.

Second, the growth rate g4 matters for the rate of return. This
determines how fast the economy grows. The rate of return has to
be at a level that will convince people to buy investment goods such
that consumption growth is the same as output growth. The faster
the economy grows, the faster consumption has to grow, and this will
happen if the rate of return is higher.

Finally, the inter-temporal elasticity of substitution matters nega-
tively (recall that the IES is 1/0). When the IES goes down, and ¢ is
higher, then the rate of return is higher. A low IES means that people
are not willing to substitute consumption tomorrow for consumption
today. The only way to induce people to have consumption growing
at a rate equal to the growth rate of output is for the rate of return to
be relatively high. In situations where the IES is high already (and
o is small), then people are easy to convince, and the rate of return
does not have to be as high.

Conclusion 4.4 is probably best seen as a way of mentally account-
ing for the rate of return, rather than a hard and fast quantitative rule.
Two of the elements in it, # and o, are preference parameters that
we cannot observe directly. Most important, the setting here has ig-
nored risk in investment, which would presumably add an additional
element to the rate of return along a balanced growth path.

4.6 Reconciling with the production side

We already had a definition of r in 4.2, though, and that depended
on K/Y. And we already know from 3.4 that K/Y along a BGP is
determined by s;/(6 + g4 + g1). Now we’ve got another defintion of r
along a BGP, and somehow they all have to make sense together.

The conclusion implies that 7867 > ¢4
as we’ll assume o > 1. Thomas Piketty
used the idea of r > ¢ to explain rising
inequality. His definitions of r and g are
not quite the same as those used here,
so there isn’t an obvious conclusion

to draw about inequality from the
condition here.

Caveats aside, if 0 is around 0.05, and
some alternative estimates of o suggest
it is close to 2, and we know that g4

is around 0.018, then this implies

rBGP = 0.086, which is in the right
ballpark for the observed rates of
return.



The consumption problem sort of “wins” here, in that it estab-
lishes what must be true such that individuals make a choice over
consumption will act in a way that g = gy, which in turn ensures
that sy is constant. So from 4.4 we know that

PP = 6 4 og4 (4.7)

which given the definition of r must mean that

K/Y)BGP = °K 8

(K7Y) 0+0ga+0 (4-8)
At the same time, it has to be from the production side that (K/Y)B¢P =
s1/ (0 + g4+ gr). This tells us that

Conclusion 4.5 (Savings rate along a BGP) The savings rate s; along a
BGP (but not necessarily off the BGP) must be

BGP _ 0+ga+8L

TT Ko+oga+6 4-9)

The savings rate that supports the BGP - the savings rate that is
consistent with people choosing to set ¢ = g, - depends on the share
of output that goes to capital, sx. That makes sense. If capital earns a
lot it makes sense for people choosing consumption to invest a lot in
accumulating it because they’ll be able to consume the big return in
the future.

It’s also true thatif 6 > g + (1 — 0)g4, then it must be that
sBEP < sk, or that the economy along a BGP puts less effort into
accumulating capital than it’s share of income. In that sense you
could say the economy “under-invests”. Essentially, this is because
individuals are impatient and don’t care enough about the far future
to invest at a rate such that S?GP = sk.

We have a lot of information about how any BGP must operate.
Recall that sPP dictates the level of GDP per capita, even though
it does not influence the growth rate of GDP per capita along the
BGP. This level depends in part on the preferences of individuals
about time - 6 - and how willing they are to substitute consumption
over time - . We’ve replaced the static sy in the Solow model with a
“deeper” set of parameters in some sense.

What we don’t have from all this work is any sense of what hap-
pens to sy off the BGP. We really should be talking about sy, the
capital accumulation rate at any given point in time, and there is
nothing we’ve established so far that tells us exactly what this will
be. Most important, there is nothing about what we’ve established so
far that ensures that s;; will act in a way that supports the stability of
the economy. What we need is that sj; acts to ensure that K/Y always

INVESTMENT IN CAPITAL 57

In the next chapters we’ll see that this
condition must hold in any rational
consumption decision.
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collapses towards a steady state. The next chapter will lay out the
larger consumption problem behind section 4.3 and that will let us
establish that in fact there is a reasonable model of individual choice
that leads to stability.



5
Consumption decisions

The stability of the the investment share s; (and of consumption

sc) is a core feature of the BGP. The purpose of this chapter is to
evaluate whether a reasonable model of individual decision-making
about consumption and investment decisions is consistent with a
relationship of s; and K/Y that supports stability. The unsurprising
answer is yes, it is, and the structure of that decision forms the basis
for most models of macroeconomic behavior.

We're going to start with a simple two-period problem and use
discrete time concepts. We need to build the tools of discrete time
optimization because ultimately we're going to add uncertainty, and
this is easier to conceive and model in terms of discrete steps (e.g.
things happen on specific dates). Once we do that, we’ll come back
and see how this looks in a continuous time model, which is what
we used to do the intuitive work in the last chapter. The economics
are all the same, there is just a difference in how the math works, and
sometimes one or the other is useful.

5.1 Simple consumption problem principles

All of the important principles of the consumption problem can be
learned looking at a two-period model of consumption. Our decision-
maker is alive for two periods and has some stock of assets a; that
they start with, and they earn some income w; in the first period.
They have to choose how much to consume in period 1, ¢;. They
earn a rate of return on their assets of r. This gives us the following
dynamic budget constraint

ap = w1+ (1+7)a; — cq. (5.1)

In this sense the constraint is that you have w; + (1 + r)ay to deal
with, and are choosing between c¢; and a,.
In period 2 they have

0=wy+ (14r)ay —cy, (5.2)

There is a notational convention here,
which is that you earn a return on your
assets coming into the period, a;, and
end up with the assets a; that you take
to period 2. This is purely a choice in
how to denote things.
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where I've written that in an odd way. The assertion here is that
a3 = 0, which makes sense because this decision-maker is only alive
for two periods. There is no reason for them to accumulate assets for
the future once they get to the second period.

The period 2 choice of consumption is thus trivial,

¢ =wy+ (1+7)ar. (5:3)

We can combine the two constraints into a lifetime budget constraint of

C2 wy

1+r 1+47r

=wi+ (1+7r)a — (5-4)
or

L2
1+7
The left hand side is the present discounted value of consumption,

c1+c—2r =(1+r)a+w + (5.5)

and the right hand side is the present discounted value of income
and assets, or lifetime wealth. We could easily assert that this person
has a7 = 0 and the constraint is not really any different.

What does this person care about? They care about consumption
in the two periods, and we’ll assert they have liftime utility of

V = U(cy) + BU(c2), (5-6)

where the time preference rate § measures how much you care about
period 2 compared to period 1. In this finite time setting it doesn’t
matter whether f§ is bigger or less than one. In problems with infinite

time horizons it will have to be that § < 1. This lifetime utility has The time preference rate f is related to
the discount rate 6 via § = 1/(1+ 0).
They are measuring the same thing, just
using different notation.

two properties that we’ll use throughout the analysis of consumption.

Assumption 5.1 (Additive separability) The lifetime utility function
V is additively seperable if the marginal utility of consumption at time t is
independent of consumption at time s.

For our simple example, note that if you want the marginal life-
time utility of ¢y, that is 9V /dc; = U’(c1), and this does not depend
on the size of c;. The simpler way to see this is that we’ve literally
added the utilities U(cq) and U(cy), and that in neither case is it
U(cy, c2). Additive separability might arguably be wrong - think of
durable goods - but it delivers a problem that is tractable and which
can match many pieces of data, if not all.

Assumption 5.2 (Concave utility) The per-period utility function U(c)
is concave with respect to ¢, meaning U’ (c) > 0 and U"(c) < 0.

This concavity assumption means that U(c) has diminished
marginal utility, which is the kind of thing we’d assume about almost

any kind of good, like pizza, beer, or in this case, total consumption. The U(c) function is sometimes re-
ferred to as the “felicity” function to
distinguish it from V, lifetime utility.



It means that it doesn’t make sense to load up all your consumption
in period 1 or period 2, but rather that you'd like to spread it out.

The problem for this person is to maximize lifetime utility - choose
c1 and c; - subject to the lifetime budget constraint. With two periods
you can “plug and chug” to get an answer on this, but we will set
this up more formally to help illustrate how this works in more
complex settings.

We're going to add one additional assumption:

Assumption 5.3 (Perfect loan market) Individuals can borrow and
lend/save at the rate r with no limit.

I've spoken about the setup so far as if individuals always save,
which would mean ¢; < wy + a1(1 + r), but this assumption means
we’re not holding anyone to this requirement. That’s a big part of the
question for us. If people are free to set ¢y higher (borrow) or lower
(lend/save) than w; + a1 (1 + r), then why would it be the case that
in the long run they tend to set c¢; lower? Perfect loan markets are an
obvious stark assumption, and it’s quite possible to add frictions here
to make this problem more realistic. There could be borrowing limits,
or different interest rates, etc.

Set up the Lagrangian for this problem as follows:

L=U(cy) +BU(c2) + A (111(1 +r)+w + 1w7+2r -1 — fir) (5.7)
and maximize with respect to cy, o, and A. That parameter A is the
Lagrange multiplier, and in this problem the interpretation is worth
thinking about. As with any multiplier, it tells us the marginal value
of relaxing the constraint. In this case, the value is utility, so A is the
marginal utility of lifetime wealth. It translates dollars of lifetime
wealth into units of utility.

The first order conditions are:

U))—A = 0 (5-8)
A
/ — =
BU (c2) o7 0 (5.9)
w) %) o
a1(1+r)+w1+1+r 1 oy = 0 (5.10)

The first condition says that the optimal solution is to set the marginal
utility of consumption in period 1 equal to the marginal utility of life-
time wealth. That kind of makes sense. If the marginal utility in
period 1 was higher, then it seems like you could lower lifetime
wealth by one dollar, and lose only A in utility, but you'd pick up
U'(c¢q) in additional utility, and you’d win. So it only makes sense for
u (Cl) = A
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The BGP preferences from last chapter,
U(c) = ¢'77/(1 — o) are concave
because U'(c) = ¢™7 > 0and U"(c) =
—oc™71 < 0.

The terms “lend”, “save”, “invest”, and
“accumulate capital” are all synonyms
in these settings. It usually just depends
on whether we are talking about
individuals (lend/save/invest) or the
economy (accumulate capital).
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The second condition is the same, but we have to translate all this
through time. Write that condition this way

A= (1+7)BU (c2). (5.11)

This says that the marginal utility of lifetime wealth should be equal
to the, well, marginal utility of consumption in period 2. But if you
gave up a dollar today (and lost A in utility) you'd get back 1 +
dollars tomorrow, and each of those 1 + r dollars tomorrow would be
worth BU’(cy) in marginal utility.

Put those first two conditions together and they say

Conclusion 5.1 (Consumption Euler Equation) The consumption
Euler equation relates the marginal utility of consumption in two periods to
the rate of return and the time preference rate:

U'(c1)
U'(c2)

= B(1+7) (5.12)

This is the same structure we used in the last chapter to come up

with the growth rate of consumption along the balanced growth path.

The intuition is identical.

That’s it, that’s the consumption solution. To get a firm answer
for the size of c¢; and c; you'd solve the Euler equation along with
the last first-order condition - the budget - and get an answer. But as
we saw in the last chapter, the key element here for us is the Euler
equation which relates consumption between two periods to the
time preference rate,  and the rate of return r. This Euler equation
implicitly tells us g. between periods 1 and 2.

There is another important feature to note of this consumption
problem

Conclusion 5.2 (Consumption and lifetime wealth) Given the as-
sumption of perfect loan markets, it is the case that the consumption Euler
equation does not depend on either the size of lifetime wealth or on the dis-
tribution of lifetime wealth between initial assets and income in different
periods.

Because they can move money around at will, individuals don’t care

when they get their money, their choice about consumption via the

Euler equation only depends on the rate r and the time preference g.
If we use the same approximation as in the last chapter, that

U'(c2) = U" ((14gc)er) & U'(er) + U (c1)erge
then the Euler equation becomes

_ U'(e) 1
8= Wi (er)ey (ﬁ(l )

—1) (5.13)

(e _
pU'(c2)
1 + 7 as this is the ratio of marginal

utilities equal to the marginal rate of
transformation, but convention is to put
the B on the right-hand side.

We should really write



which if you plug in that B = 1/(1 + 6) you'll get that (1+6)/(1+
r) —1 =~ 6 —r and so we're back to

coa(E) e

and the growth rate of consumption depends on the difference in

r and the discount rate, modified by the intertemporal elasticity of
substitution. All we’ve done is show that the simple derivation in the
last chapter is the solution to a formal two-period problem of optimal
consumption.

5.2 Savings and the rate of return

Even with the approximation for g. this still doesn’t quite tell us
anything about s;, which remember is what we’re examining to
assure that capital accumulation supports the stability of the BGP we
see in the data. We already know from last chapter that a valid and
necesary form for the utility function is U(c) = c!=7/(1 — ¢), so it is
obvious to work with that. In that case the Euler equation becomes

% — 13(1 + r) (515)
)
or

Like our more approximate answer above, this says that the growth
rate of consumption (or the ratio) depends on the relative time prefer-
ence rate and rate of return (B(1 + r)), and how sensitive people are
is determined by the IES, 1/c. If B(1 +r) > 1, then it must be that
cp > c1, or consumption grows. If B(1+7r) < 1, then c; < ¢ and
consumption shrinks. But changes in r will change growth in con-
sumption depending on how big 1/c is. People with low elasticities
will not respond much, and people with high elasticities will respond
strongly to 7.

Use that Euler equation in the budget constraint (the last FOC
from the Lagrangian, technically) to plug in for

w 1+
ﬂ1(1+7’)+w1+17+2r_51— 1+g;61:0 (5.17)
and this resolves to
w
= [T <a1(1+r)+w1+1+2r> . (5.18)
+ 1+r

The thing in parentheses is total lifetime wealth, and note that c;
doesn’t depend on when wealth arrives, just how big it is, as men-
tioned in 5.2.
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The initial fraction is the share of total lifetime wealth that the
person consumes in period 1. This fraction depends on the optimal
growth rate of consumption, and the higher is that growth rate the
lower is this share, which makes sense. If you want fast growth of
consumption, you have to start relatively small. That extra 1 4 in
the ratio is capturing the fact that it’s not just whether you want
consumption to grow fast, but whether you want consumption to
grow fast relative to how fast you could grow consumption by saving.
If you want to grow consumption faster than r, you need to push
down current consumption a lot. If you are fine letting consumption
grow slower than r, you can actually consume a lot today, because r
will ensure you get a good amount tomorrow as well.

There are multiple ways that the rate of return influences the

consumption choice. If you have a few hours, go ahead and
try and take the derivative of s; with
¢ Substitution effect. Think of this as the impact of a change in r respect to 1+ r and see that there is no

s 1. . R imple solution.
on g., which is purely about the ratio of “prices” in the Euler simpre soHon

equation. An increase in r raises the price of consumption in
period 1 because you are foregoing future consumption. You
substitute away from c¢; and hence g. goes up in response. You
save more in response.

* Income effect. Think of this as the effect of a change in r acting
on the 1 + r in ratio (1 + g¢)/(1 + r). An increase in ¥ makes you
feel richer, and expands your options. This might lead to a higher
consumption c;, and therefore might lead you to save less. If o > 1,
which is what we tend to assume, then this income effect “wins”
versus the substitution effect, and an increase in r tends to raise
consumption and lower savings. A high value of ¢ means that
gc does not respond much to changes in 7, leading to the income
effect dominating.

e Wealth effect. The last effect comes from lifetime wealth. If r
goes up, then this lowers the present discounted value of wy, as it
comes in the future. Wanting to smooth consumption, you need to
consume less, and end up saving more for this future that is less
wealthy.

I was loose about the term “savings” there, because we have to be
careful. If we want to think about how s; works, we need to remind
ourselves that sy is a macro/production side concept dealing with
the ratio of capital accumulation to GDP. In our consumption model
the various individual terms do not necessarily map directly to this.
We're going to hold off on linking things back to s; for now, as this
mapping gets easier once we expand out and incorporate this into
the wider production side. Right now, our consumers don’t perceive



any notion of the macroeconomy - they take r and such as given -
and just make decisions.

One useful notion, though, is whether people choose to have
consumption bigger or smaller than their initial period resources. In
period 1 they have (1 + r)a; + w; available to them. An interesting
question is whether they choose to consume more or less than this
particular amount. It will be the case that ¢; < (1+r)a; + w if

w
— (a1(1+r)+w1 + 1+2r) < (14r)ag+w; (5.19)

I+ 1+r

or if
(%)

A+ ay + o, <1+ g (5.20)
People will save some of their initial period resources if the ratio of
second period exogenous income (w; just happens to them without
any choice on savings) is sufficiently small compared to total first
period resources. How small that has to be depends on preferences
embedded in g.. If people want high growth in consumption, this is
easier to meet as a condition, and people naturally save some of their
first period resources. If g. is low, however, it is more likely that they
“eat” some first period resources and just wait for w, to arrive in the
second period.

This helps explain some of the relationship between r and g4
we saw in the last chapter. To support a BGP r had to be equal to
0 4+ 0ga. The value of g4 is going to dictate how big w;, will be in
relationship to period 1 resources; if the economy grows fast so
does wy. If growth is fast enough this might convince people to just
eat some first period resources and not accumulate anything at all.
Just wait for economic growth to make you rich. So the only way to
support a BGP is for the rate of return to be high enough that their
preferences in g. create a big growth rate of consumption, which can
only happen if they don’t eat those resources. A stable BGP depends
on the production side yielding a high enough rate of return to
convince everyone to keep accumulating even as the economy grows
anyway because of g4.

5.3 Arbitrary time periods

The game now is to extend this consumption problem out to an
arbitrary number of periods, T, which could include up to an infinite
number of periods. If T is the end point, then the last period with
wages or consumption is T — 1. We have to do a little work her to
write down the appropriate budget constraints, but once we’ve done
that the essential nature of the problem remains identical.
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Don’t get weird about infinite time
periods. You can think of people who
care about their kids (and hence their
kids kids, etc.) or you can think of
people who, conditional on being

alive, have a non-zero chance of living
another day, meaning there is no upper
limit to lifespan, even if the probability
of living gets quite low.
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Definition 5.1 (Dynamic budget constraint) The dynamic budget
constraint is
a1 =wi+ (1 +r)ar—cy, (5.21)

holds for every period t = 0,...,T — 1

We will add to this an assumption that governs the individual
problem

Assumption 5.4 (Terminal asset condition) It must be that
ar >0 (5.22)
Those two constraints can be combined to say the following
Conclusion 5.3 (Lifetime budget constraint) Given the dynamic bud-
get constraint and the terminal asset condition, it must be that
T-1 T-1
ag + Z Wl T _o(1+ rg) 1> Z oIl (1+ rs) ! (5.23)
=0 t=0
or the PDV of lifetime wealth must be greater than or equal to the PDV of
lifetime consumption.

This thing is kind of ugly because of the combined discount factors.
If we assume that all s = r, then this becomes simpler as in

-1 o, -1
ag + t;o T2 EO A (5.24)
Lifetime utility is now
T
V= t;]ﬁtu(ct). (5.25)

There’s a few ways to solve this overall, including “plug and chug”
with the budget cosntraint and lifetime utility, although that gets
rough. Let’s stick with the Lagrangian, as again that sets us up to
think about more complex problems. But we have to be a little more
careful here as we do not have a lifetime budget constraint, just the
dynamic constraint. That means there are really T constraints, one for
each period, so we have

T
L=) pU(et) + At (we+ (1+re)ar—c—ap1).  (5.26)
t=0

Taking first-order conditions gets a little trickier here. We want to
look at the FOC for a single given period, ¢. That means we're taking
FOC with respect to ¢;, a;41, and Ay

BU () —Ar = 0 (5.27)
M+ (1 +r1)Ap = 0 (5-28)
wr + (1 + T’t)at —Ct—ayy] = 0 (5.29)

If we had uncertainty about life ex-
pectancy, then we could allow for some
people to die “early” compared to
expectations, and we could then add
an insurance market which allowed
people to insure against this so that in
expectation ar = 0 and in aggregate it
held exactly. We could also allow for
bequests, so that people wanted to leave
ar > 0 to their kids, and then we’d
think about utility for a family which
would go out to infinity.



Pay attention to the middle one, because a;;1 shows up in two sep-
arate dynamic budget constraints. It’s the link over time, and so
increasing assets lowers utility today (by A;) and raises it tomorrow
(by (14 r¢41A441). We also know that if we did these FOC with respect
to period t 4+ 1, we’d get a FOC for consumption that looks like

B (et 1) — Arpr = 0. (5.30)

We can put all of this together into a solution. First, the condition

on assets means that

A
1471 = Ttl
+

(5:31)
and therefore if the rate of return is positive then it means the
marginal utility of wealth must be going down over time. That makes
some sense. Wealth in the future should be worth a little less than
wealth today in utility terms, because it involves waiting. The rate
7+4+1 is the rate at which the market will transfer utility over time.

Take the conditions on ¢; and ¢ together to get

U/(Ct) o )Lt
BU'(ci11) A

(5-32)

which says that the ratio of marginal utilities must be equal to the
ratio of marginal utilities of wealth. That also should make sense.
This is saying the value of consumption in utility terms between
periods needs to match the ratio of marginal utility of wealth. If it
didn’t, you could move consumption around to take advantage of the
difference. This is probably the more accurate way to think about the
ratio of marginal utilities equal to the ratio of prices, and the prices
here are marginal utilities of wealth in the two periods.

We know the ratio of marginal utilities of wealth is bigger than one
if r111 > 0. And thus the ratio of marginal utilities must be bigger
than one, or MU in f must be bigger than MU in ¢ 4 1. But because
of the B term, this doesn’t mean U’ (¢;) is necessarily bigger than
U'(ct41)- It's going to depend on how big f is, or how much you care
about period ¢ + 1 compared to .

Put all of this together into the Euler equation. In 5.1 we already
solved for this for a two-period problem, but being pedantic lets
write down

Conclusion 5.4 (Consumption Euler Equation) The consumption
Euler equation relates the marginal utility of consumption in two periods to
the rate of return and the time preference rate:

u'(ct)

Wler) B(1+7:41) (5:33)
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The fact that the Euler equation doesn'’t
depend on the size or timing of life-
time wealth ties this to Friedman’s
“Permanent Income Hypothesis” and
Modigliani’s “Lifecycle Hypothesis”. In
the PIH changes in income today will
have a small impact on consumption
today because they don’t change the
Euler equation. In the LCH your choice
of consumption isn’t bound to when
you earn money, so you borrow while
young and live off savings when old.
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The same proposition on timing of wealth holds as in 5.2. This Euler
equation does not depend on the timing or size of lifetime wealth.
With BGP preferences the consumption Euler equation is

Ct41

o =B+ r)]Y7 =1+ 8o (5-34)

where the growth rate of consumption is now specific to period ¢
because the rate of return is specific to period ¢ + 1.

The remaining part of this problem is to choose the actual amount
of initial consumption, ¢y, to start with, such that your choice of cg
and the time path of ¢; implied by the Euler equation ensures that
you stay within the lifetime budget constraint.

In theory one could work this out via pencil and paper, given the
string of rates of return, wages, and initial assets. In practice this
is tedious and hard, and we can use a computer to solve this out.
Simplifying things via things like a constant rate of return or constant
growth rate of the wage will make things much easier.

5.4 Infinite periods

Let’s extend this to infinite periods. For lifetime utility, there is no
issue, this just becomes

V=3 BU(e) (535)
t=0
For the dynamic budget constraints we continue to have that

App1] = W + (1 + rt)at — Ct, (5.36)

at any given time £.
But now we don’t have ar > 0, because there is no T at which the
problem stops. The equivalent condition in infinite time is

Assumption 5.5 (No Ponzi Condition) The “No Ponzi Game” condi-
tion requires that:

lim 2,11 _o(1+75)~" > 0. (5:37)
This condition says that the present discounted value of assets has
to remain positive or zero as time goes to infinity. It’s not that one
cannot accumulate debt at any point during the infinite number of
periods, it’s that the present discount value has to vanish over time.
The big mess of IT!_ (1 +r;) ! is the series of market discount rates
applied to the value of a;. If rs = r for all periods, then this is the
simpler term a;/ (1 +r)".

Charles Ponzi got temporarily rich
through a chain letter scheme in the
1920’s. The modern equivalent in Bernie
Madoff, and there are occassional
instances of these all over the world.



I'm being loose here, but for all intents and purposes you can just
take the same lifetime budget constraint with T periods and take the
limit at T — co to get that

ag+ Y wllio(1+r) 7' > ) el g(1+r)""  (538)
t=0 t=0

Everything works out the same as with a large T problem, you just
need to assert that the left-hand side of the constraint here adds up to
something finite.

5.5 Continuous time

The continuous time version of this problem looks similar in most
respects. Lifetime utility is now

V= /Ooo U(c)e %dt (5.39)

so that consumption is continuously discounted at the rate 0. I've dis-
carded any t subscript or notation because it kind of gets annoying,
but you can understand that c is in fact ¢(t). The dynamic budget
constraint is
da=ra+w-—c (5.40)

where da is the instantaneous change in 4, and it depends on the flow
of income, ra + w, and the choice of instantaneous consumption, c.
Again, I dropped the t. Don’t get too hung up on “instantaneous”,
just think of doing discrete time in very, very, small increments. In ad-
dition to this we need a No-Ponzi requirement to keep accumulation
sensible, and this is

lim a(t)e™ Jyr(s)ds > 0. (5.41)

t—o0

The exponential term is the continuous equivalent of the string of
discount rates run from time o to time t. I'm specific about a(t) here
because this limit is keyed off of the time. All this says is that the
PDV of assets has to remain non-negative as time goes to infinity.
Same logic as before.

The continuous time equivalent problem is solved using a Hamil-
tonian, rather than a Lagrangian. They are not quite the same, as the
Hamiltonian is about the current value of the objective (utility) and
not lifetime value. It’s going to tell us what you have to do any any
given moment ¢ to optimize.

H(t) = e”"u(c) + A(ra+w —c). (5-42)

The Hamiltonian is thus a function of t. The first term is the utility
value of consumption at some time ¢, which note depends on the
discount rate.
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If you assume r; = r, then lifetime
wealth will be finite so long as w;
doesn’t grow too fast. if w; = wy(1 +
gw)!, you'd need to have g, < r for
finite wealth.

This is a current value Hamiltonian,

so it’s the utility value of H(t) from
the perspective of time zero. You can
write down and solve a present value
Hamiltonian and get the same answers.
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There are a standard set of conditions we evaluate H with. The
value of A is again a marginal value of relaxing the constraint.

1. Maximize with respect to control variable, c.
oH
5 = e ' (c)dc—A =0 (5.43)
Notice that this is the same construct as what we got with a La-
grangian, as it relates the MU of consumption to the marginal
utility of wealth.

2. Evaluate the change in the value of the multiplier due to a change
in assets
oH

A= ——— =M (5-44)

where that negative sign shows up because we’re varying a while
holding H constant. This is again showing us that the rate of
return tells us something about how the multiplier changes, as this
implies r = —dA /A, or the rate of return is the growth rate of the
multiplier.

3. Evaluate the change in the state variable and recover the dynamic
constraint,

oH
da—ﬁ—m—i—w—c. (5.45)

You solve these together. From the first condition you can get
another expression for dA

—0e~ %' (c) + e~ %u" (c)dc —dA =0 (5.46)
and use with the second condition to get
—0e %' (¢) + e " (c)dc = —Ar (5-47)
and using the first condition again we get
—0e %' (c) + e " (c)de = —e % (c)r (5.48)
which solves down to
u(c)de = 0u' () — u'(c)r (5-49)
and to p ,
To=-0) |-t (550

and this should all look familiar now. The left side is the growth

rate of consumption. The right side is » — 6 times the IES. This is

the formal derivation of the intuitive version of the consumption
problem from the last chapter. You’d combine this with the No-Ponzi
condition to get a solution for consumption levels at any given point.
The same rules apply here, which is that solving for the actual value
of consumption will be tedious and we tend to rely on numerical
answers from the computer.



6
Exchange Economies

The consumption problem we set up is not a complete model in the
sense that there is a price - 7 - that is just taken as given. That might
make sense for the individual (they don’t control the price) but we
don’t have any way to determine where r came from. We also don’t
have any way to know where the string of w earnings come from, but
often we are willing to take that as a given endowment, especially as
for our consumer here there is not choice over how much to work,
so w doesn’t really constitute the price of their time (it could and we
could model that).

One way we could endogenize r and make that price an equilib-
rium of supply and demand is to merge this consumer problem with
the production side from the Solow model. There the rate of return
is determined by K/Y, and the value of K/Y would depend on their
choices. That will be the neo-classicial model.

But before we get to the neo-classicial model there are other ways
to think about endogenizing r, meaning other ways to think about
there being a supply and demand for assets. These are useful in other
contexts and come up often in macro research. In these settings the
focus is typically more on asset prices or other aspects of the econ-
omy and they are less concerned with growth or stability (or they
take those as givens). We often refer to these settings as endowment
economies because the stream of income w and initial assets ay are all
just taken as given. They could even have uncertainty around them,
but nothing the individual does (or the group of individuals does)
will influence the pattern of that income, unlike the neo-classical
model.

In these economies people still want to borrow and save, poten-
tially. But now the only way to borrow and save is to find another
person who wants to do the opposite. In the neo-classical model
you'll be able to borrow or save with yourself in the sense that your
savings (anything you don’t consume) will necessarily still be there
tomorrow in the form of capital. Here, anything you don’t eat dis-
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appears, so you have to rely on others to alter your consumption
path.

So now we have to find a way to construct an equilibrium where
everyone is acting according to their consumption problem maxi-
mization rules - the Euler, etc. - but in which the net decisions are
such that there is no net borrowing or lending in the economy in any
given period. You and I can trade, but we can’t trade off against the
future.

Because these economies explicitly have different people or types
of people we often refer to them as exchange economies and they are
nothing more than the typical two-person markets you set up in
intermediate or talked about in terms of Edgeworth boxes and the
welfare theorems.

The last thing about these economies that we’ll add is that we will
be more explicit about the kind of equilibrium we’ll set up. That is,
we need to define the situation where supply and demand equalize.
Supply and demand of what? It depends on how we allow these
people to trade. The different setups are useful to know because they
come up in other contexts, including the neo-classical. In one case
we presume that at period zero people can make any kind of trades
about any future periods they want, and that those trades are binding
and impossible to cancel. These are called “Arrow-Debreu assets”
and this is an “Arrow-Debreu equilibrium” where the supply and
demand of those assets is in equilibrium and we will see how those
prices dictate the path of consumption.

A different concept is that the only assets that can be traded are
one-period assets, meaning I can only write a contract to borrow or
lend to you today with a payoff in the next period. It’s still perfectly
enforced, but I can’t look ahead, and at time zero I cannot make
all the possible trades I want to make. This is called a “sequential
equilibrium” and it is implicitly what we looked at last chapter. A
key point is that the sequential and Arrow-Debreu equilibrium’s give
you the same answer in our narrow consumption problem, which
is useful because it means we can leverage that to solve problems
later in one form or the other. It’s often easier to think about Arrow-
Debreu equilibria (all trades take place at once) rather than worrying
about sequential trades. That will fail at some point when we add
uncertainty (you can’t know what to trade at time zero if you don’t
know what will happen), but even then there are cases where the AD
still holds up.



6.1 An Arrow-Debreu Equilibrium

The first step is that we can re-cast the consumption problem in
terms of prices, not returns. Let lifetime utility be over a set of |
goods, and there is a preference weight of f; on each one (note not
raised to a power or anything) and the utility function U(c;). So
goods differ because ; might be higher or lower, but the marginal
utility of each one works in the same way, with U(c;) having normal
properties.

J
V=13 BiU(c) (6.1)
j=0

The only change is the lifetime budget constraint will be written in
terms of

/ J
) Pjwj = ) picj: (6-2)
=R

This person has an endowment of w; of each good, and that is their
total income or wealth, and they want to spend that on the various
consumption goods. This is nothing more than a slightly complicated
intermediate micro problem.
You can set up the Lagrangian and get a relationship like this for
any two goods i and j
Bil'(ci) _ pi
Bilu'(c;) v
The ratio of marginal utilities should equal the ratio of prices. If we

(6.3)

use our normal assumption about utility with CRRA then it will be

the case that
c ,3 p 1/c0
] ] Pi
J_ (0 . 6.
¢ (.Bi Pj) ©4

Relative consumption of the two goods depends on their relative
price, and the sensitivity to the ratio of prices dependsonc. 1/0
represents their willingness to substitute between goods.

Let’s say we have two people A and B, the only two people in the
economy. They each have first-order conditions of

A 1/0
G- (Bim ©5)
A Bi pj
and y
B o
G (bie) 6.6)
ck Bi pj

We could let their § values differ too, but that just gets tedious to
keep track of without any real intuition.

It’s also got to be the case that their consumption totals for a given
good j have to add up to the endowment,

EXCHANGE ECONOMIES

73



74 MACROECONOMICS I

Definition 6.1 (Endowments) In an endowment economy total con-
sumption of individuals of good j has to add up to the total endowment of

J
A B_ A B

Using the first-order conditions it would be that

ﬁ ' 1/0
<,B]Zl> (A +cB) = wf—l—w]B, (6.8)
rFy
and note that because of the endowments this must be
ﬁ‘ 1/0
<’B]Zl> (w +wB) = w]A + w}a (6.9)
rFy

or that

Conclusion 6.1 (Relative price) The relative price of two goods i and j is

pi _Bi (w]A —HU]B)(T, (6.10)

pi B \wi +wP

determined by

The equilibrium price of i to j depends on a few things. First, it
depends on the relative preference for i and j. If you care more about
i it will have a higher price because A and B will bid up the price on
it. It also depends on the relative supply, given the endowment. If
there is more j that will drive down the relative price of j, and vice
versa. All this equation says is that supply and demand influence
the price. The degree to which the supply changes the price depends
on o, how willing customers are to substitute. We can write down a
relative price ratio like this for any two goods.

There should not be anything mysterious about this problem, it
just has a lot of products to think about. The key thing we want to
see is that we can frame the inter-temporal consumption problem in
just this way. It’s just a change to think about products as “consump-
tion in period j” rather than pizza or beer or whatever.

The only mental change we have to make is that the order of the |
goods is important. If | are time periods then we can’t just arbitrarily
reorder the numbering. In a regular static problem pizza could be
good 1 and beer good 2, but we just as easily let beer be good 1 and
pizza good 2. Here, there is something specific about goods i and j
and we can’t just call them j and i.

Just like the pizza/beer problem, our individual is making a
static decision over a set of ... well, securities or assets rather than
produts. When they pay p; they are buying an asset that will allow
them to consume one unit of consumption in period j. They have
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an endowment now not of pizza and beer today, but some expected
income in period j of w; (they could consume this if they wanted),
and they can sell an asset to someone else promising them one unit
of consumption in period j based on that income.

Definition 6.2 (Arrow-Debreu asset) As Arrow-Debreu asset i is an
asset that sells for price p; in period zero, and which delivers one dollar (or
one unit of consumption) in period i in the future.

The AD asset is a concept that turns an inter-temporal good
into something that is bought and sold today. This isn’t entirely
hypothetical, of course, and this is just what most financial products
are. You pay a price today to deliver some money (which can be used
to buy consumption) in the future. A complete set of Arrow-Debreu
securities or assets means that an individual can move consumption
around from any period i to any period j. This makes a full set of
Arrow-Debreu securities equivalent to assuming that one can borrow
and lend at will. That need not mean that the interest rate for all that
borrowing and lending is the same for all periods, just that one can
move money around.

If we think about these as assets, then we can think about their
rate of return. Think about the annualized rate of return, r;, you get
on an asset i that is sold for p; in period zero, and that pays off one
dollar in period i.

Definition 6.3 (Return on AD assets) The annualized rate of return on
an AD asset that pays off in period i is defined by

pil+r) =1, (6.11)
and note that py = 1 and ro = 0 by definition.

Now, let’s be more specific about some things and see how this
relates to our overall consumption problem from before. Keep in
mind that the order of j matters, as these are time periods. Let’s say
that the preference weights are §; = /. Let’s say for simplicity that
w;‘ + wf = (1+g)/~(w# + wP) or that the total endowment grows at
the rate g every period. This means that the endowment in period i
from the perspective of period zero is w# + w? = (1 + g)!(w§' + w}).

Together this means that if we compare the price ratio in i to zero,
pi/ po, using what we know this is

1 B! 1 7
—— = . 6.
e () o2
Raise this to the 1/i power on both sides, and flip over, and you get

1+ri=;((1 +9)7, (6.13)
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or that the annualized rate of return you’d get for any arbitrary
choice of i (1+ g)?/B. The annualized rate of return for every asset in
this simplified economy is the same because the endowment grows at
a constant rate and the preference weights change at a constant rate.
Soallr; =r.

If you re-arrange this you get

14+g=(B(1+m)"7. (6.14)

The growth rate of consumption in this Arrow-Debreu exchange
economy has to equal the growth rate of the endowment because
there is no other option for people. That growth rate dictates the rate
of return that has to hold such that everyone in this economy acts to
ensure that their optimal choices add up to match this constraint.

We can formalize this equilibrium concept, which note is just a
way of saying we are formalizing the problem we are writing down
and the things we are solving for. Of note, it specifies who knows
what and who takes what as given.

Definition 6.4 (Arrow-Debreu Equilibrium) An Arrow-Debreu Equi-
librium is a sequence of prices {p;}$>., and choices {ci}$>, for all individu-
als i such that

1. Given {p;}$2, the choices {ci}% , maximize utility for an individual i
in (6.1)

2. ..subject to the constraint (6.2) for individual i

3. and that markets clear in each period t so that ¥, ci = Y_; wi as in 6.1.

All this has done is give us a way of thinking about how our indi-
vidual consumption problem people could co-exist in an economy
where things have to add up.

6.2 Sequential markets

That’s one way of conceiving of how an exchange economy could
work. But it requires us to believe there are a complete set of securi-
ties out there allowing everyone to make all possible future trades,
right now. You might not like that, or you might easily imagine sit-
uations where that would break down (think of where there is a lot
of uncertainty). An alternative is to look at an economy where indi-
viduals can trade with one another where to buy/sell assets today in
exchange for returns tomorrow, and every period they can do that
again. But they cannot go out into the future more than one period.
Again, we’ll assume all the assets are perfectly enforced.
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Definition 6.5 (One period asset) In period j there is an asset that can
be purchased for price q; that pays off one dollar (or one unit of consump-
tion) in period i + 1.

They still maximize utility as in 6.1,

J
V=) BiUlc) (6.15)
=0

but now we’re thinking about dynamic budget constraints, not a
lifetime budget constraint. In each period they see this dynamic
constraint

gidjy1 = Wj +a; — ¢j (6.16)

where they have some income/endowment of w;, they have some
financial holding 4; to begin with, and they choose some consump-
tion ¢; or they buy 4;,1 units of the asset for next period at the price
g; (timing and notation here is tricky). The a; was the payoff or cost
of the asset they bought or sold last period, and it either added or
subtraced from their ability to consume today.

Set up the Lagrangian and solve for their first-order conditions
and you have

,B]-U'(c]-) A =0 (6.17)
Biil'(cjy1) —Ajy1 = 0 (6.18)
Ajp1—Ajq; = 0 (6.19)

as first-order conditions. You can re-arrange these to be that

Bil'(c;) 1

_— = — 6.
Bir1l'(cjv1)  4; (6.20)

In this case, the ratio of marginal utilities has to equal the ratio of
prices, as usual. The price of consumption in j is one, and the price
of consumption in period j + 1 is ;. Using the CRRA assumption it

would be that
1/0
Cj+1 = @l C]'. (6.21)
Bi aq;

This has to hold for each person in this economy, so there is a
first-order condition like this for each. And it has to be that their
consumption still adds up each period as in 6.1,

c]A + c]B = w]‘-q + w]B, (6.22)

and therefore it must be that ajﬂ_l + a]B = 0. That is, there can’t be
any case where both individuals think they can consume more than

their endowment in a period. The only way to violate this would be if
agl +af > 0 and there were some assets
sitting around to start with.
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Combining the first-order conditions and this adding up condition
it has to be that

;B 1 1/
i+1
wihy +wpy = | o — (w + wp) (6.23)
;B] qj
or that " s o
Bi+1 wit + w;
q;i = B; wh 1 wB . (6.24)
] j+1 j+1

Which looks a lot like the AD price equation. The price of an asset
that pays off tomorrow depends on the relative preference weight of
tomorrow versus today, and it depends inversely on the endowments,
modified by how much you are willing to respond to relative prices.

Definition 6.6 (Rate of return) The rate of return on the one period asset
with price q; that pays off one dollar the next period is defined by

qj(l + rj) =1 (6.25)

Given that definition the whole pricing equation is

A B \¢
1 . w4 w:
_Fin ( I > (6.26)

. 4 A B
1+7 B Wi Wi

Assume again that g; = B/, and that wﬁH + wJBJrl =1+ g)(w]A + w]B)
and we have

1 B 1 v
== 6.
1+rj 1<(1+g)) (6:27)
which means that . v
1+r = “;2) (6.28)

Again, this doesn’t depend on the time period j we choose, so r; = r
for all the time periods. Again, the rate of return is identical over
time here and that rate of return has to work such that it ensure total
consumption grows at the rate of the endowment. You can re-arrange
that to

1+g=(B(1+m)"° (6.29)

or that the Euler equation must deliver a growth rate of 1 + g as the
choice for individuals.

Definition 6.7 (Sequential Markets Equilibrium) A sequential mar-
kets equilibrium is a sequence of prices {q:}<> o and choices {ci}$* , and
{ai}s2, for all individuals i such that

1. Given {p;}$> the choices {c}}® , and {al}% , maximize utility for an
individual i in (6.1)
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2. ..subject to the dynamic constraints (6.16) for individual i
3. and that markets clear in each period t so that ¥;ci = ¥ ; wi

4. .. and that Y_; ai = 0 (no net assets)

This is again just a way of consolidating information about how
our model is structured, and what people are choosing and what
they know. It helps clarify how to arrive at the solution.

Conclusion 6.2 (Equivalence of AD and Sequential Markets) Given
an AD equilibrium with p;;> , and cizo, then there exists a sequential
markets equilibrium with q;72 , such the solution for cizo is identical. The
reverse holds. Given a sequential markets equilibrium with q;;2 ) and cifio,
there exists an AD equilibrium with p;2 ) such that the solution for c’:):O is
identical.

The choice on how to structure the financial markets for these
individuals isn’t important, you get the same answer. That’s true
given these limited parameters. Probably the most important one is
that all these AD assets are perfectly enforceable, meaning a contract
made at time zero can be enforced in period 1,938. Once that fails, so
does this equivalence.
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7
Dynamic General Equilibrium

We will approach this decision in this chapter from the perspective of
a single decision-maker. You can conceive of this person as a “central
planner” or “social planner” who makes decisions about s; taking
into account all the ramifications of those decisions. An alternative is
to conceive of this decision-maker as a “representative agent” whose
decisions reflect how everyone acts. Neither of those are realistic
descriptions of economies in any sense, of course, but this approach
will give us a decent way of understanding the choices involved.
Then we can examine the conditions under which a decentralized
economy of consumers, firms, etc. with limited information will
reach the same aggregate decisions.” This model is something I
usually refer to as the “Ramsey model”, but you can find it referred
to at times as the “Cass-Ramsey-Koopmans” model, or the “neo-
classical growth model”.

7.1 The intuition of the DGE model

Before we get into math, let’s go through what we’re doing. We want
to take the Solow model and make the s; choice endogenous, and
from there we want to know if by making it endogenous that we still
have a BGP and that the economy is still stable around that BGP. A
better way to say this is that we want to understand what conditions
on individual consumption choices ensure stability, as that seems to
be what we see in the data.

Mathematically and economically this is going to get complicated
because the production side stuff from the Solow model will depend
on the consumption choice, and the consumption choice will depend
on the production side stuff. Individuals are choosing c; based on
a time path of 411, and that return depends on the capital/output
ratio. The capital/output ratio depends, through sj, on the choice of
Ct.

The consumption problem comes down to, in large part, choosing

*F. P. Ramsey. A mathematical theory of
saving. The Economic Journal, 38(152):543—
559, 1928; David Cass. Optimum growth
in an aggregative model of capital
accumulation. The Review of Economic
Studies, 32(3):233—240, 1965; and Tjalling
Koopmans. On the concept of optimal
economic growth. In The Economic
Approach to Development Planning, pages
225-287. Rand McNally, 1965
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the initial value c(, and then letting the Euler equation go from there.
Any choice of ¢y will give you a solution for c; across time. That is, if
you just plug in some value for ¢y you can iterate the Euler equation
and capital accumulation equation to generate sequences for ¢; and
K;/Y; and just see what happens. You could do it by hand, but it’s
also easy to do this on a spreadsheet or computer program.

Not every choice of ¢y will be the optimal solution from the per-
spective of the individual, though. If we choose ¢( too high to start
with, then ultimately the path will become infeasible, in the sense
that your spreadsheet or program will want to make K/Y negative at
some point. Consumption in this case is too high, and because it is
high s is too low, and because of that K/Y starts to decline as people
consume existing capital to keep up. But as K/Y gets lower the rate
of return on capital goes up, which just makes people want to have
higher growth in consumption, which exacerbates the problem. This
is the Ponzi game situation. If ¢y is too high to start we can keep
consuming more but you cannot keep this up.

If you choose cy too low you end up with the opposite problem. s;
is now big and K/Y grows rapidly, but that means the rate of return
goes down a lot. A low return means you want slow consumption
growth, which means you never really consume enough to keep the
K/Y ratio in check. As time goes on the value of the assets you hold
remains positive even out to infinite time, and remember we don’t
care about the future that much. This doesn’t make sense because
you could raise cp and have higher consumption at every point in
time and still not violate the no-Ponzi condition.

Somewhere in between these situations is the solution for ¢y which
delivers a time path for consumption that maximizes lifetime util-
ity. This solution ensures that consumption does not go to infinity
(infeasible) or to zero (stupid), but rather ends up at growing at a
nice constant rate forever. In other words, it ensures we end up at
a steady state. That’s good. It tells us that having individuals make
consumption choices is still consistent with their being a BGP.

But this still doesn’t necessarily tell us if that BGP is stable. If
we make the “right” choice of ¢y does that always push us back to-
wards the BGP? The answer is going to be yes. The economy is stable
around the BGP when the consumption choices of individuals lead
to the capital accumulation rate working to push the capital stock
back towards steady state. Why does that work here? If K/Y is below
steady state, then this would imply that the rate of return is high,
and in that case the individuals would want a high growth rate of
consumption via the Euler equation. A high growth rate of consump-
tion is only feasible if you start with relatively low consumption
today, which means a relatively high accumulation rate for capital.
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A high accumulation rate for capital pushes K/Y up, towards the
steady state. Mathematically, the exact form this takes is not solvable
with pencil and paper, but the core idea is that even with individ-
ual choices over consumption (and thus sj) it remains that gx /vy is
negatively related to K/Y.

Let’s think again about instability. The Ramsey or neo-classical
model tells us a few things that do not cause instability, even though
intuitively we might have thought they would. One is that people are
impatient. We might think that economies would be instable becuase
no one is patient enough to accumulate capital. But here this appears
to be offset by the rate of return, which at some point is high enough
to overcome even the most impatient person’s unwillingness to save.

Another possibility for instability is that individuals are not taking
into account their effect on the macroeconomy. No one necessarily
is thinking they have to save or invest in a manner to ensure stability.
But so long as the rate of return that individuals face is informative
about the real rate of return on capital - the capital market is not
totally screwed up - then their individual decisions will lead to
stability. We’ll be able to establish that it’s possible that this kind of
decentralized economy could actually end up finding itself on the
same path as one in which an all-knowing planner chose the path.
Possible, not inevitable. But the point is that decentralized markets
do not inevitably lead to instability.

This gives us some clues to what could cause instability, though.
One is the capital market. If for some reason that market is not
telling individuals the real rate of return on capital, then they’ll
make decisions that might not support stability or even the existence
of a BGP. You can think of this as a an important way in which
an economy might stray from the BGP and stay off the BGP for a
while, and that might be because the de-centralized market has some
friction or information problem.

Other failures of stability would be these poor choices of cy. One is
the over-accumulation problem, which at the risk of being simplistic,
might be called the Soviet problem. Accumulating capital for the
sake of accumulating capital is setting ¢y too low and ending up with
a massive K/Y ratio (which, note, means a very low average product
of capital) and very little consumption. Eventually people will realize
they are not maximizing consumption and will complain and/or
revolt. A different version of this failure mode might be the Great
Depression and deflationary pressures, where people consume too
little in anticipation of deflation, and the over-accumulation of K/Y
occurs via a significant drop in Y, as opposed to building too much K.

The second failure state is the Ponzi scheme situation, or under-
accumulation. Here the immediate term involves rapid growth
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in consumption which can only be sustained by using up the real
capital stock, and as K/Y declines the rate of return goes up and
incents people to raise consumption even further. We have not talked
about financial markets in any serious way, but this at least sounds
like a financial bubble or something akin to it. Perhaps housing
bubbles might be a good model for this kind of failure state?

Why would people choose the “wrong” cp? Why not is the better
question. You can come up with a lot of reasons that people are not
forward looking or do not have full information. And that may not
be because markets have failed at all to pass along information on
rates of return. Nevertheless, because we see most rich economies at
least in stable situations it seems as if something is working to get cg
close to the stable situation most of the time.

This gives us a map for what to think about in terms of the model.

Don’t think about this model as telling us how the world works.
Think of this model as telling us that there are conditions under
which a BGP can exist and that is is possible for the economy to be
stable even with individual decisions and all the possible failure
states. Instability isn’t inevitable.

7.2 Consumption side

The consumption problem concerns a single person, or household, or
planner, and we didn’t talk specifically about how population growth
might influence things. We're going to assume that lifetime utility is
continuous, as this makes this particular problem easier to solve.

V= / LoeStfe =0 (c,)dt (7.1)
0

but now be clear that ¢ is consumption per capita. The LoeSt! term is
capturing that the number of people enjoying this U(c;) is growing
over time. The value of 0 is the discount rate, as usual. We'll assume
that Lo = 1 for convenience and then

V= / e~ O8I (c))dt (7.2)
0
Assets per capita evolve according to
da=w+(r—gr)a—c, (7.3)
and we still need a no Ponzi condition like
'red
lim age™ Jo7s% > 0 (7-4)
t—o00

and these people have some initial value of assets per capita, ag.

There is a long philosophical argument
to have about whether V should
depend directly on population growth
or not. We're letting V go up with
population size, but it need not, it just
changes how you interpret 6.



DYNAMIC GENERAL EQUILIBRIUM

We know the answer to the consumption side of this problem, and
we’ll assume people have the BGP preferences discussed before.

1
e = —(r—9). (7.5)
We’re going to characterize this consumer side more formally so
that we can refer back to it in the future.

Definition 7.1 (Household Optimization problem) Taking a series of
prices wy, r¢;-, and an initial value of ag as given, the household chooses a
series ct, apjo o that:

e Maximizes V = [° e~ 08U (c;)dt
* Subject to the dynamic budget constraint da = wy + (1 — g1)ar — ¢
® Subject to the no-Ponzi condition lim;_e are™ Joreds >0

o And requiring that ¢y > 0 for all t

7.3 Production and asset markets

In continuous time, the work from the Solow model translates with-
out too much trouble. We need to do a little work to establish what
the rate of return r is that faces individuals. And for that we need
both a better understanding of how firms operate and a capital
market that matches up firm’s demand for capital with consumer’s
supply of capital.

For the firms, we presume that, like the Solow model, there are
firms that operate with a CRS cost function. That set of firms will
operate such that the marginal product of capital, which depends on
the elasticity, is equal to the price of renting a unit of capital, R. Note
that this R is different than the r rate that individuals will earn on
their assets, but we’ll see how they are connected in a bit. There will
be a similar condition setting the marginal product of labor equal to
the wage rate,

Y
GL% = w (7.7)

where the € terms are the elasticities of production with respect to
the input, and with CRS those elasticities sum to one. We’ll tweak
this later to see that allowing for economic profits doesn’t change the
stability result. To be formal,

Definition 7.2 (Firm optimization problem) Taking a series of prices
wy, Re2 as given, taking the price of output as the numeraire and equal to
one, the firm chooses a series K¢, Loy such that
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o They maximize profits at every time t: 7y = Yy — wiLy — RiKy

 Subject to the constraint that that Y; = F(Ky, Ly) where F() is constant
returns to scale and the elasticities of Y; with respect to inputs are eg and
€1, respectively

® Subject to the constraint that Ky > 0 and Ly > 0

How does R relate to 7, and how do we move the savings of indi-
viduals over to firms to use as capital? We need some structure for a
financial market.

Definition 7.3 (Zero profit financial market) Taking a series of per-
capita assets {a; }{2, and capital {K;}3° , as given, the financial market sets
a series {1t} such that

L4 TtthLt = (Rt — §)Kt
o Total assets equal the total capital stock, arLy = Ky

This helps make clear that the assets of households are used, and can
only be used, as capital by the firms. It also establishes how the rate
of return paid to households, r4, is related to the rate of return paid
by firms, R;, which has to be that r = R — 4.

Putting this all together. If assets evolve according to

da=w+ (r—gr)a—c, (7.8)

then with a = k, r = R — §, and the firm’s first order conditions we can
write

dk = w+(R-56—gp)k—c (7.9)
dk = ery+ (exky/k—06—gr)k—c (7.10)
dk = (er+ex)y—(6+gL)k—c (7.11)
dk = y—(0+gL)k—c. (7.12)

The evolution of capital (per capita) in this economy looks a lot like
how the Solow model works, only here we have y — c rather than sjy.

7.4  Equilibrium

That’s kind of it. You now have two differential equations relating
consumption and capital to one another, and this additional twist
that GDP per capita, y, depends directly on capital per capita, k. So
there isn’t really a third variable, just another version of k.

1
8 = ;(exy/k ) (7.13)



DYNAMIC GENERAL EQUILIBRIUM 87

and
Sk =y/k—(6+gL) —c/k (7.14)

We can ask if there is a steady state at g, = 0. If g/, = 0,
then ¢, = 0and g, = 0, given that from the firm side we have

gy = €K/€Lgk/y and A = 0.
The Euler equation tells us that

(]I;) = ;fg- (7.15)

This looks a lot like the steady state we established two chapters ago.

The difference here is that we set g4 = 0 and we have that sx = ex
here.
Given that, the steady state condition we get is

c\* ((5 + gL)
Z) =1 e oL .
(y) K50 (7.16)
which means that we have
s] = eKié +g6 . (7.17)

The steady state rate of return in this economy is
r*=6. (7.18)

Yes, there is a point at which both g = gx = 0, as usual this is a
BGP because once that is true we know that s is unchanged as well.
Now the question becomes whether this is stable, and that requires
us to understand how this operates away from the BGP.

First, think about starting out with some value gy (which is also
your ko). This is given, and our individuals need to choose some ini-
tial value cg. Once they have this choice in place, the mechanics of the
Euler equation and the capital accumulation equation take over and
we can just iterate this process forward to see what happens. Some of
those choices of cy will be too big and will end up violating the No
Ponzi condition in that they will lead k/y into negative territory as in-
dividuals try to borrow, which can’t happen here because there is no
one else to lend you capital. Some of the choices of cy will lead to big
values of k/y but c will go towards zero (g. will become negative).

It can be mathematically shown that there is a single value of cg
such that starting with this ¢y the dynamics of the model put ¢ and
k/y on a path such that they hit the steady state. The set of these ¢
values - one for each value of a; - constitutes the “stable arm” of this
dynamic system. The stable arm is not just the right starting value
of cp to hit the steady state, but it is the path along which ¢ moves

The dynamic system is thus “saddle
path stable”. The proof of this is in the
supplemental material.



88 MACROECONOMICS I

towards the steady state regardless of which value of ¢y you start
with. It’s the one path from any initial value of 4y to the steady state.

So yes, it is possible for this system to be stable. If the consump-
tion choice is always along the stable arm, then no matter what the
system heads to steady state. The economic question is whether
anything would ensure that individuals always choose the value of
co that makes sense. The answer is that if we assume people are try-
ing to maximize lifetime utility - which we did assume - then the
utility-maximizing answer is to pick the stable arm value of cy. If you
start too high, you violate the Ponzi condition, and you cannot keep
borrowing forever, it’s infeasible. If you start too low, you accumulate
many assets - it’s feasible - but you could consume a little more and
still have a lot of assets, and consuming more would raise lifetime
utility.

Stability in this neo-classical model depends on individuals maxi-
mizing their utility in their consumption choices. Let’s not get hung
up on the idea that economies are stable because individuals are
incredibly precise about picking exactly the right value of ¢y at all
times. They are not, because this is a model, and because people are
generally dumb.

So long as people are close to the stable arm the dynamics will
push close to the steady state, and it’s always possible to correct by
adjusting c later on. If we figure out we are not exactly on the stable
arm, we can “jump” our value of ¢ to get on the stable arm, even if
we can’t “jump” the value of assets or capital. You can think of the
economy as being stable in the same way that a distracted driver is
stable in their lane on the highway. Yes, they drift sideways some
times, but in general they stay in the lane. Whether they are exactly
in the middle of the lane all the time isn’t as important as that they
don’t drive sideways into a barrier at sixty miles per hour.

Robert Solow said it better:

The problem is not just that perfect foresight into the indefinite future
is so implausible away from steady states. The deeper problem is

that in practice - if there is any practice - miscalculations about the
equilibrium path may not reveal themselves for a long time. The
mistaken path gives no signal that it will be ultimately infeasible. It

is natural to comfort oneself: whenever the error is perceived there
will be a jump to a better approximation to the converging arm. But a
large jump may be required. In a decentralized economy it will not be
clear who knows what, or where the true converging arm is, or, for that
matter, exactly where we are now, given that some agents (speculators)
will already have perceived the need for a mid-course correction while
others have not. This thought makes it hard even to imagine what a
long-run path would look like. It strikes me as more or less devastating
for the interpretation of quarterly data as the solution of an indefinite
time optimization problem.

One can get hung up on “equilibrium
concepts” here, but in practice we mean
“solves all the equations I've written
down”.

While not necessarily true, a stable
arm is going to involve a negative
relationship of s; and k/y under most
realistic parameters, which ensures
stability of the k/y ratio.
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7.5 Add growth rate

The preliminary model excluded any trend growth g4 from consid-
eration because it makes the accounting a little harder to handle. But
we can readily adapt now that we know how things work. Incorpo-
rating growth in productivity doesn’t change the problem that the
individual perceives, because they still just care about maximizing
consumption per capita.

As per our Solow model, let productivity growth mean that

8y = €k8k T €1L8A (7.19)
SO
Sy = €x/€L8k/y T 8A- (7.20)
Even given that, nothing changes about the actual accumulation
equation for capital per capita,

Sk=Yy/k—(0+gL)—c/k (7.21)

The consumption Euler equation also doesn’t look any different as
people just take the path of wages and returns as given.

1
e = E(eKy/k —6—0). (7.22)

But as we know, the steady state now requires that g = g4, not
zero. Steady state is where g;/, = 0, so that means a steady state is
where ¢y = ¢4, and hence that g = g4. If ¢t = g4, then it has to be

that
ga=y/k—(6+8L) —c/k (7.23)
or that
y c
8A+5+8L_k<1—y>- (7-24)

Because a steady state is defined by the point where k/y is constant,
this only works if ¢/y is constant, or there is a constant savings rate.
Thus a steady state only holds if g. = gy, or g = g4. Using that in
the Euler equation gives us

Conclusion 7.1 Neo-classical growth model steady state For the decen-
tralized neo-classical model with BGP preferences the steady state
outcomes are:

<k> ek (7.25)
y) 0+0+oga 725
and that the steady state rate of return is

" =0+0ga. (7.26)
The savings rate in this steady state is

* 5+gL+gA
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All this is exactly what we thought it should be in 4.5. The decen-
tralized problem with individuals making consumption decisions
and firms taking the rental rate as given leads to a BGP with the
same properties we thought it would.

The same idea applies to choosing an initial ¢y along a stable arm.
There is a stable arm which leads the economy to the steady state,
and that stable arm is the utility-maximizing choice, which is why it
seems to make sense that economies are stable.

After we looked at 4.5 we talked about why s} could or would
be less than sk. In this case, the question is whether s7 is less than
€k. But the same idea holds, which is that the savings rate will be
lower than capital’s share or elasticity if g4 + g1 < 6 4+ 0g4 or
0—gL>(1-0)ga.

Why does this condition hold? Look at the PDV of total consump-
tion along a BGP (assuming that we're already on the BGP). That’s

/Ooo coesctLoeStte ™ dt. (7.28)
On the BGP we know that r = 6 4+ 0g4 and g. = g4 so this whole
thing is

/oo COLoe(gA+gL7970'gA)tdt. (729)
0

This PDV is finite only if the exponent is negative, so only if g4 + g1 —
0 —0ga<0orf—gr>(1—0)ga.

The point here is that the only feasible answer for an economy
is to have s} < e, or for the economy to “under-save” relative
to the importance of capital in production. That happens because
people are impatient, but that’s what ensures this whole thing holds
together.

Conclusion 7.2 (Below the Golden Rule) In a Ramsey/neo-classical
economy with impatient individuals, 8 — gr > (1 — 0)ga is required for the
equilibrium to be feasible. Therefore the steady state savings rate is below the
Golden Rule savings rate, s7 < S?R = €.

This isn’t a failure of some kind. The Golden Rule from 3.5 is an
abstract benchmark that ignores time preferences of all kinds. Under
the Golden Rule the PDV of consumption goes to infinity, which is
fine in the Golden Rule because we’re not letting anyone make any
choices. But if you have people making choices, and tell them that
they have an infinite PDV of consumption to play with, they will
very much not save at the Golden Rule rate. They will not save at all,
because why bother. An equilibrium with positive savings requires
people to be impatient to some degree.

We can actually say quite a bit about
how sj; will behave along the stable arm.
See A.20. The general point is that so
long as e is fixed, it will rise or fall
monotonically as we approach steady
state. It never jumps around.

If the value of 6 is just right the optimal
savings rate will be constant, as in

the Solow model. See A.19. Thus the
constant rate of s; in the data doesn’t
tell us by itself that we’re at steady state
or on a BGP.
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7.6 Planner and market outcomes

The equilibrium (with growth of g4 or not) depends on individuals
making utility-maximizing decisions for themselves. But how does
that equilibrium compare to one where someone with full knowledge
of how everything work would pick? Does the decentralization of
decision-making here - individuals and firms - lead to the economy
missing some obvious gains? I've already alluded to the answer,
which is no. The reason is that the capital market is sending both
firms and individuals accurate information about the rate of return
on capital, and hence they choices consistent with having full infor-
mation about .... the rate of return on capital.

But if you were an all-knowing planner, what would the problem

look like? You'd again want to maximize lifetime utility There is another point of argument
about why a planner would have

—(6—g1)t the same per-capita preferences as
V= / U Ct)d (7.30) individuals. They also might have a

different discount rate, etc.
Because they are all-knowing, they don’t think of themselves as

having assets that get translated through a capital market to firms, or
anything like that. They know that capital accumulates according to

dk =y —(0+gr)k—c (7.31)

and to avoid tedious math we’re going to set g4 = 0 again. They also
know that y is a function of k.
Their Hamiltonian looks like this

H(t) = e*(efgL)tu(c) +A(y—(6+gL)k—c). (7.32)

The planner is picking ¢ with k as the state variable. Using the stan-
dard Hamiltonian conditions we have

oH

= = e~ 0=t/ ()de —A = 0 (7:33)
oH

dd=—=r = —Mexy/k—5-g1) (7.34)
OH

dk=-r = y—(0+g)k—c (7-35)

Solve these together again like with the consumption problem
—fe~ =8t () 4+ e~ 08Ut (Yde —dA = 0 (7.36)
and use with the second condition to get
e~ 0=t/ () + e~ O (C)de = —Aey/k—b—g1)  (7:37)
and using the first condition again we get

—Be=O=8)ty (0) 4 e~ O=8Lt " (0)de = —e~O=8U (¢) (exy /k— 6 — g1)
(7.38)
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which solves down to

u"(c)de = 0u'(c) —u'(c)(exy/k — 6 —g1) (7-39)
and to ; )
76 =gc = (exy/k—0—gL—0) [— ubf,((cc))c} : (7-40)

This is the same as the consumption Euler equation from the indi-
vidual problem once we accounted for how r was determined by the
market. The planner gets the same answer.

The other condition in the decentralized model was that

Sk=Yy/k—(6+gr)—c/k (7.41)

which is just the exact constraint the planner uses. Everything is
identical, so the solutions are identical.

Don’t over-interpret this result. This is not a statement that de-
centralized markets invariably or always or inevitably reach the
same results as centralized planning. It is not an argument that
centralized planning can achieve the same outcomes as markets. It
is an observation that in a situation where markets pass on undis-
torted information on literally everything that matters to decentralized
decision-makers they will not leave any gains on the table. It works
here because this economy is so simple there really is only one piece
of information to pass on, the rate of return. The only thing the cap-
ital market is doing in the decentralized model is telling indviduals
what is happening to R on the prodution side. There’s only 1 asset
and no other choices that could be made, so there’s only one piece of
information to pass on.

The other thing we learn from this it is not necessary to have a
planner to achieve stability. If the market passes along sufficient
information the decentralized economy can have stability too. That’s
interesting to us because a large part of the argument around the
origin of macro was whether markets were inherently unstable and
that you had to have a central planner to ensure stability.

7.7 Distribution and stability

It turns out that you don’t even need perfect information from the
markets to get stability. What [ mean is that even if the signals are
distorted to some extent you can still get stability in a decentralized
market. You won't reach the same level of utility - gains will be left
on the table - but it won’t necessarily mean instability.

What we're going to change is that we’ll give the capital market
some wedge or friction they impose on returns. In our GDP account-
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ing terms we said that

Y Y
R:SKK andr:sKE—J (7.42)

where sg was capital’s share of income. That R and r are the returns
that the capital market pays to the asset-holders. But they might
charge a rate of R’ > R to firms.

Firms will still spend a fraction eg of their output on capital
services, so it will be that

exY = R'K. (7.43)

The capital markets accounts now look like this

rK+1II = R'K— 6K (7.44)
where 77 is a profit that the capital market collects and we could see
this as

skY — 0K+ m =exY — 9K (7.45)
so that
IT= (ex —sx)Y (7-46)

and the profits of the capital market are positive so long as they
pay out sk at a lower rate than ex. How can they do this? Pick your
favorite I/O story about how banks or financial markets are orga-
nized that would allow them to collude or compete in some kind of
Bertrand /Cournot manner to provide assets to firms. It's not relevant
for our problem how they get the profits, just that they do.

What happens to those profits? Well, the world has to add up, so
the individual dynamic budget constraint now looks like this

do=mn+w+(r—gr)a—c (7.47)

where 7r = I1/L are per-capita profits. From the perspective of the
individual these profits just appear (think of them owning stock in
the capital market companies). Assume that they don’t know how
this all works; the checks just show up. They don’t know that they
are getting 7t profits at the expense of their own r return on capital.
That’s the point at which information is not flowing to them.

Because 7 is taken to just appear, like the wage, it changes nothing
about the Euler equation, which is still

1
ge=_(r—16) (7.48)
but that now resolves to

1
8 = (;(Sxy/k —6—9), (7.49)
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and the rate of return here is lower because s is lower. All else equal,
they’d choose to have lower consumption growth, meaning they save
less, which makes sense because the rate of return is depressed. We
know the steady state capital/output ratio (assuming productivity
growth of g4) is

¥ - SK

and is lower than when the capital market had no profits.
The growth rate of capital is still

gk=y/k—(6+gL)—c/k (7.51)
and with the steady state finding this implies that

¢ 8AtOtgL

s} = K9+ 51 0ga (7.52)

which is exactly what we found in 4.5, which didn’t rely on any
assumptions about efficiency of the capital markets.

What changes with this inefficient capital market? This economy is
still stable. Nothing about the dynamics changed in any material way.
There is still a stable arm and all that, and in equilibrium individual
still choose to be on that stable arm, as that still maximizes utility.
It’s not that different than just saying from their perspective that the
elasticity ex changed.

What does change is that the planner’s solution is now different.
Either the planner doesn’t use a capital market (why bother when
you know all) or the planner knows that the capital market makes
profits and they know exactly how those profits affect . The planner
has full information. So the planner would still choose

Planner __ 8A +5+8L *
ST = K9t ot ogs > s]. (7-53)

In this case the planner can sustain a higher k/y ratio and higher
consumption in steady state.

Thus frictions in the economy, at least in the simplistic way we’ve
looked at, are not necessarily destabilizing. They are inefficient in that
they lower lifetime utility. But even with these frictions the capital
market still tells people that when k/y goes down r goes up, even if r
is always “too low” compared to an efficient market.

7.8  Equilibrium concepts

Very often you will see research which makes a clear statement of
what an “equilibrium” consists of. One of the margin notes above
made an offhand comment about this just being “what I'm solving
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for”, and that’s not wrong as a general point. But it is often useful, in
particular as models get more complicated, to have a clear statement
of the equilibrium that one is looking at or for. One thing that the
equilibrium statement makes clear is how you, as the modeler, view
the decision process of the agents (people, firms, etc.) in your model.
What optimization problem are they in fact solving, what kind of
prices are they aware of, and what are the adding-up conditions or
market clearning conditions that hold?

In the case of our de-centralized neo-classical model we might say
something like this

Definition 7.4 (De-centralized Equilibrium) A de-centralized equilib-
rium consists of a series of prices {wy, ¢}, allocations {ct, az1}§° for the
household, and allocations {Ky, Ly }§° for the firm such that

1. Given prices the allocations solve the household maximization problem in
(7.1)

2. Given prices the allocations solve the firm maximization problem in (7.2)
3. The financial market clears according to (7.3)
4. The labor market clears L; = LgeSL!

5. The aggregate economy is closed Yy = ctLy + dK; + 0K

The exact terminology is going to vary depending on who wrote
down the model and their choice about how to define things. The
important aspects of writing down an equilibrium statement like
this are that it contains the information about what is being chosen,
what constraints have to bind, and what each agent knows. Here this
helps make it obvious that in our neo-classical model the choice is
the entire series of consumption and assets from time zero to infinty,
made all at once. If you like, the equilibrium statement collects all
the moments I might say “we also know XXXX” when working
through problems more loosely in class. An equilibrium statement is
answering :what are all the things we know about the economy?

Naming these is ambiguous. Some people will refer to this as
the “competitive equilibrium”, which I avoid because the word
competitive denotes a very particular market structure for firms that
is not necessary for this de-centralized equilibrium to hold. What
this equilibrium is about is the fact that the agents (households and
firms) each take the series of prices as given when they solve their
maximization problems.

This equilibrium is also an Arrow-
Debreu Equilibrium, in the sense that
we're presuming everything can be
decided at period zero. When we
move to a value-function approach we
will explicitly switch to a sequential
equilibrium concept.






8
Dynamic programming methods

This chapter is technical. It is about a method for solving a dynamic
optimization problem. This method, sometimes called dynamic
programming, uses something called a Bellman equation to break
down the dynamic problem into what amounts to a two-period
problem. You can think of this method as flipping how we look at
dynamic problems.

Lagrangians and Hamiltonians are asking you (or the optimizer)
to decide on the sequence of choices you'll make - ¢; for example -
over the entire time frame of the problem. In the case where we know
with certainty what will happen, that works. And that’s true even
though the choice of ¢; influences the future. There is no uncertainty
about how c; affects the future. So conceptually it is plausible to pick
the entire sequence of c; from the initial period.

That’s not a very intuitive way of thinking about how people
make decisions, but that isn’t a problem with Lagrangians and
Hamiltonians, it’s because we know the world has uncertainty and
there is no possibility of picking a full path from today’s perspective
because things will change in unknown ways.

The Bellman equation approach flips, like I said, the perspective
on the problem. Rather than picking a sequence of ¢; all at once, it
asks the optimizer to set up a decision rule (or algorithm or menu)
of what c; they should pick at time ¢ given the information they
have on the state of the world. It’s asking you for an answer on
what to do whatever the situation. Now, in the case of full certainty,
this decision rule will replicate the sequence you’d get with the
Lagrangian/Hamiltonian. But one value of the Bellman equation
approach is that it will more naturally lead us to a way of thinking
about how to optimize in the face of uncertainty, when the best thing
we can come up with is a decision rule.

The other thing the Bellman equation does is give us a means of
numerically solving for the decision rule. You can solve numerically
for the Lagrangian/Hamiltonian answer, too, but the Bellman equa-
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tion is recursive (it refers to itself) and recursion is something that
computers do very well. Others can and will teach you all about
optimizing the numerical techniques associated with solving these
problems. I will not. I'll show you very slow, very inefficient scripts
that, to me, explain what is going on without being fast. But the
structure of how to solve problems using Bellman equations is power-
ful and can be used in far more situations.

There isn’t anything here that changes how we think about stabil-
ity or growth. It’s purely a way of approaching a problem.

8.1 Setting up the Bellman equation

Nothing here will look weird. We’re going to solve the planner’s
Ramsey problem just as before. We’re going to do it in discrete

time, however, because this will help make sense of the Bellman
equation and because this will be more natural to use in settings with
uncertainty. Utility is

V= i BiU(ct). (8.1)
t=0

Depending on your opinions you can imagine that  incorporates an
adjustment for population or not. Doesn’t matter. For the dynamic
budget constraints we have that

ki1 =yt +(1—3—gr)ke —ct. (8.2)

The planner knows how capital accumulates, and we know that this
doesn’t necessarily change the problem’s solution unless there is a
capital market friction, and even then we could work this out. They
know y; is a function of k; (and possibly some growth rate g4). There
is also a No Ponzi condition to consider. The other important thing is
that the planner has some kg initial asset stock.

Let’s assume you solved this problem. Then there would be indi-
rect utility function of something like this

oko) = max |Y pulye+(1—5—g )k k)| (83)

kev1iZo | =0

which says that the indirect utility, conditional on ko, is the choice of
the sequence of k;;1 terms that maximizes lifetime utility subject to
the dynamic constraint that relates c; to k; ;. Note that we still have
the notion of a sequence of answers here. v(kg) is the utility value of
being on the stable arm, so to speak.

Now just break apart that summation term this way

v(ko) = Jmax u(yo+ (1 —6—gr)ko—ki)+ Y Blulye + (1 =6 —gr)ks — k1) | -
t+1t=0 t=1
(8.4)
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This just says the indirect utility depends on the utility in period zero
plus a discounted sum of utility from period 1 forward. But look at
that thing inside the summation. It’s looks like an indirect utility of
an optimization problem as well, but a problem that starts at time 1
rather than at time zero. We can write this as

v(ko) = U u(yo+ (1 —6—gr)ko — k1) + B max Y Bu(ye1+(1—6—gr)ki1 —kisa) | -
1

t4+2¢t=0 t=0
(85)
I did a few notational things. I reset the summation to period zero,
which is just a choice on how to number things. The choices still start
with k; and go forward (see the maximand). Because I reset the time
period back to zero, I need to discount it by , as otherwise when
t = 0 we’d lose the proper discounting.

And we are doing two maximizations. This seems worse, but it’s
better. The first optimization is easy, because now we are just picking
k1, one thing. We're trading off utility today - U(cp) - against the
utility we could get by sending k; into the future, where that second
maximiation says “do the best thing possible with k;”. All we’ve
done is push the rest of the optimization into the future.

But notice the form of this future indirect utility looks exactly like
indirect utility today in form. The future indirect depends on an
initial value k; which comes from our first choice, but that doesn’t
matter. We can write

v(ko) = max [u(yo + (1 =06 —gr)ko — k1) + Bo(ky)]. (8.6)

This v(ko) is our Bellman equation. It is recursive in that the function
v(ko) is defined implicitly as it depends on itself in terms of v(ky).
This has reduced our big sequential choice down to choose kj. In
that sense we’ve lost the time dimension of the problem, taking the
future v(kp) as given. What we’ve replaced it with is a choice of this
function. The Bellman equation is a functional equation, in the sense

that it is a function that depends on another function. We can make This isn’t that weird. In(xy) = In(x) +
In(y) is a functional equation because
the function of xy on the left depends
on functions of x and y on the right.

this generic, as it doesn’t depend on just periods o and 1,

o(ke) = max[u(y; + (16 = gu)kt = ki) + polker)] - 87)
and this holds for any periods ¢ and t 4 1.

The Bellman equation is a functional equation, but don’t think of
v(k) as a function, per se. It’s better to think of it as a list. It’s a list
that tells you the value of having a specific amount of k. In that it’s
a little like the Lagrangian multiplier, but it’s not the marginal value
of wealth, it’s the total value. If you have k = 1, then the utility value
of that is 3.26 (for example). If you have k = 2, the utility value of
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that is 5.93 (again, example). Thinking of v(k) as a list will help in
understanding how we solve this numerically.

Thinking of v(k) as a list is also why Bellman equations are often
written with slightly different notation that doesn’t use the ¢ sub-
scripts. It’s because the Bellman setup is not really about time, per se,
but about lists. So normally what’s written is this

v(k) = max [u(y+ (1—0—gr)k—K)+ po(k')] (8.8)

where k is “what I have” and k" is “what I'm choosing”.

8.2 Value function iteration

v(k) is cool, but it isn’t really the “answer” to the optimization prob-
lem. The answer to the problem is a control or policy function which
is the choice you make in response to the argument of the Bellman
equation. Given k and given a known list v(k’) of the value of having
capital in the future, you can do the simple maximization and pick
a value of k. That value of k' implies a value of ¢ because they are
linked by the budget constraint c =y + (1 — 5 — g )k — k.

The Bellman approach kind of works backwards. Let’s assume that
we know what the list v(k) looks like and that we therefore know
some control function

K = g(k), (8.9)
where again I'd encourage you to think of g(k) not as a function, per
se, but as a list of what to do if you have k capital to start with. It’s
the answer to the maximization problem inside the Bellman equation.

This means we should have

g(k) = arg max [u(y+ (1—0—gr)k—K')+ po(k')] (8.10)
and that

o(k) = u(y+ (1 -0 —gr)k—g(k)) + po(g(k)). (8.11)

Great, we've assumed we have an answer. But we don’t know
what that answer is. Here’s the power of the Bellman equation ap-
proach, value function iteration. The value function v(k) is what is
know as a contraction mapping, and because it is this thing, it means
that we can use an iterative process to close in on the actual function

v(k).

Definition 8.1 (Value function iteration) Iterate the value function as
follows:

1. Start with any function/list v(k)o, where the subscript O refers to the step
in the iteration.

The mathematical proof that Bellman
equations have a solution given certain
conditions on u and B < 1 and the
allowable set of choices of k is not
something we are going to go through.
For our purposes, it’s enough to know
it can be proven. The intuition is that u
has to have diminishing marginal utility,
meaning it is bounded, and that there is
at least one value of k that you can pick.
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2. Each subsequent step in the iteration, n, produces a new function/list
0(k)n1 = maxp [u(y + (1 -6 —gL)k — k') + po(k')]

Then the following is true

1. The sequence of v(k), for n = 0, ..., 00 converges to v(k), the function
that solves the Bellman equation

2. The distance of v(k), to the solution v(k) gets smaller as n increases.

You could apply this iteration by hand, but that would be dumb.
This is what computers are for. Give yourself a starting list v(k")j.
Do the maximization problem, choosing k', given that starting list,
for every possible value of k. That will give you an answer for what the
value of each k is. That’s your new iteration of the value function,
and you use that to start the next iteration, v(k");.

To do this you have to make a few assumptions because computers
are great but they cannot actually deal with infinite values of k or run
the iteration to infinity:

Assumption 8.1 (Implementing value function iteration) To apply
the iteration method:

1. “Discretize the state space”: Pick a discrete number of values of k that are
allowable in the calculations. This can be a very large number, but needs
to be discrete.

2. Assign a tolerance: Pick a value of the distance between v(k),+1 — v(k)x
such that once the distance is below this tolerance you can stop iterating.

You are thus going to get a numerical approximation to the true
function v(k). In theory the v(k) list is infinitely long, but you will
have 1,000 or 10,000 or 1,000,000 values on it, which will be sufficient
to see what is happening.

By the way, once you have iterated and found your solution v(k),
you then also have your policy function g(k), because in your last
iteration g(k) is the list of choices you made for k’ for each value of k
that you started with.

This all makes far more sense when you see it on a computer,
which is what we’ll do in class.

8.3 Properties of the Bellman equation

The Bellman equation gives you a way to numerically solve for v(k)
and the policy function k¥’ = g(k), which remember also implies a
policy for consumption, c. Remember that’s what we actually want
to optimize over? There is nothing about the numerical answer,

The “distance” in the definition is
between two lists. In practice take

the element-wise absolute value of
the difference between the two lists,
and the distance is the largest of those
differences. This is a “sup-norm”.
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however, that tells us anything necessary about what the solution
looks like. It would be weird - and wrong - if the Bellman iteration
gave us an answer different than what we got just doing the regular
old maximization and finding a stable arm. These better give us the
same answer.

Let’s go back to our generic form of the Bellman

v(k) = max [u(y+ (1—0—gp)k—K') + po(k')] (8.12)
What kind of properties must the solution, in the form of v(k) and
g(k), have?
Start with the maximization problem itself. This says to optimize
over k’/, and the first order condition is

—u'(c)+ B’ (K)=0 (8.13)

or that the marginal utility of consumption today (which depends
on our choice of k') should equal the discounted marginal value of k’
in the future. That should make some intuitive sense. We should be
trading off on the margin between consuming today and consuming
in the future, and v(k’) is telling us how valuable consumption “in
the future” will be. Nothing too strange here.

But this FOC does depend on v (k’), or the marginal value of k’,
which we don’t know. But we do know how v(k) works. It’s kind of
weird to think about taking the derivative of v(k) on the right-hand
side because this is a max problem. But we know that there is this
notional policy function g(k) out there that let’s us write

o(k) = u(y + (1 -6 —gr)k—g(k)) + po(g(k)). (8.14)

Now, what’s the derivative of v(k) with respect to k, where g(k) is
accounting for all the impacts of k on the problem?

o/ (k) = u'(¢) [ay/ok + (16 — g1) — &' (K)] + o/ ((K))g (k). (8.15)

The change in value when k changes depends on how that impacts
the immediate budget through y and the amount of capital available,
which is valued based on marginal utility. But it also depends on
how k' is affected by having a bigger budget, and that influences
today’s utility as well as the value in the future.

This, however, simplifies. Re-arrange this to be

V'(k) = u'(c) [0y /0k + (1 =6 — gr)] + [Bo' (g (k)) — '(c)] &' (k). (8.16)

The term in the second set of brackets is, given that k' = g(k), just
Bo' (k') — u'(c), which we know from the first-order condition must

If the Bellman approach and the
Lagrangian/Hamiltonian give us the
same answer, why bother? Because the
Bellman approach is more flexible for
solving problems with uncertainty, and
can be applied in other settings where
doing the Lagrangian/Hamiltonian
isn’t plausible. It’s a more generic
method.
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equal zero. That means that the derivative of the value function with
respect to k is just

o' (k) =u'(c) [0y /ok + (1 —6 — g1)] . (8.17)

The value function changes with k only because that expands the

current budget (and that gets valued at marginal utility). This is an example of the Envelope
Theorem. Because v(k’) is presumed

The last thing we cna do is use this condition for v’ (k) and note o o
to be maximized already, adjusting the

that it holds for any given value of k. So we can write constraint on the margin cannot change
L e the value. If it could, then v(k') must
o' (K') =u'(c") [0y’ /oK' + (1 -6 —gr)] - (8.18)  not have been maximized to begin with.
Put that back into the first-order condition from the maximization
—u'(c)+Bv'(K)=0 (8.19)
and we have
u'(c) = pu'(c") [9y' /oK' + (1 — 6 — g1)] (8.20)
which we could write as
wie) _ g By’ /oK + (1 -5 —g1)]. (8.21)

u'(c")
That should look familiar, as it is just an Euler equation. Presuming
that production works in our normal way and that ¢’ means “next
period” we have
u'(cr)
——— = Blexyrs1/ ki1 + (1 -0 —g1)]. (8.22)
u'(ces)

Value function iteration using the Bellman equation provides an
answer for what v(k) and g(k) are. Those answers conform to the
Euler equation we had from our typical Lagrangian/Hamiltonian
problem. Nothing about the Bellman value function iteration gives
us a different answer. It is just a tool for finding the answer. But it’s a
tool that works in lots of settings.

Equilibrium

Like we did with our earlier Ramsey model, we can write down a
more formal equilibrium statement. In this case it will be a recursive
equilibrium, which just refers to the fact that we’ll be solving for
a value function and policy function as opposed to a set of initial
choices (AD). A recursive equilibrium is different than a sequential
equilibrium, although as you can see they feel related to one another
because they are both about having a “rule” to use in picking what
happens next.

Remember that we’ve done this entirely in terms of a planner so
far, or if you like a single person existing on an island who under-
stands all the implications of their actions.
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Definition 8.2 (Recursive Planner Equilibrium) A recursive planner
equilibrium consists a value function v(k) and policy function g(k) such
that

1. v(k) solves the planners Bellman equation v(k) = maxy [u(c) + Bo(k')]
and g(k) is the associated policy function

2. ¢ evolves according toc =y + (1 —6 — gr)k — k'

We could consider a decentralized recursive equilibrium where
a household that doens’t appreciate the implication of their actions
is making decisions, and then we need some additional aggregate
constraints that govern how the prices that individuals see (wages, re-
turns) are determined by the state of the aggregate economy. Where
recursive equilibria statements look different here is that we want
to be explicit about which aggregate state variable (capital, labor)
is dictating the price, as opposed to just talking about w or . Why?
Because these settings are about solving for the evolution of that state
variable, from which everything else follows. That’s not some new
idea, we did it in the Ramsey model, but in recursive settings we're
more explicit about this in part because that is how things get solved
numerically and how the math associated with Bellman equations is
worked out.

These get more complicated because if we have individual(s)
making decisions without knowing the overall effect of their actions,
we need additional constraints or terms that ensure that all those
decisions are consistent with the aggregate state. To put that in terms
that would be familiar from last chapter, we could write down a
decentralized equilibrium as

Definition 8.3 (Recursive Decentralized Equilibrium) A decentral-
ized recursive equilibrium consists a value function v(a, k) and policy
functions a’ = g(a, k) and ¢’ = h(a, k), and price functions r(k) and w(k),

1. v(a, k) solves the planners Bellman equation v(a, k) = max, [u(c) + po(a’)]
and g(a, k) is the associated policy function,

2. ¢ evolves according to a’ = w(k) + (1 +r(k) —gr)a—c,
3. r(k) and w(k) satisfy the firm maximization problem in (7.2),
4. The financial market clears according to (7.3),

5. Consistenty, g(k,k) =y + (1 -6 —gr) — h(k,k)
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Shocks and fluctuations

The Ramsey model we have is a reasonable platform to describe
long-run trends in most economies (developed ones, at least) and
why they appear to have a substantial amount of stability across
many dimensions. Those economies, though, never appear to be
perfectly stable, however, in the sense that their growth rates and
allocations like consumption shares are not always at a fixed number.
In particular, these economies appear to have notable fluctuations
around those trends. These fluctuations are often referred to as
“business cycles”, although I dislike the term “cycles” because it
implies some kind of necessary symmetry (equal time “above” trend
and “below” trend) that I don’t think is accurate.

Leaving aside my concern we can adapt our Ramsey model to
allow for fluctuations. We'll do this in pieces as there are substantial
technical issues we need to deal with to get there. The path looks
something like this. We have the Solow model, which is a dynamic
model of capital accumulation. To this we can add stochastic shocks
to productivity which will create fluctuations around the trend, but
which will illustrate for us that because of the dynamic nature of
the economy (e.g. capital tomorrow depends on capital today) these
shocks will have lingering effects on the economy even if they only
exist for one period of time. The stability of the Solow will keep
pushing the economy back towards the trend. We'll need a set of
tools for describing and handling stochastic processes.

Once we have all that we’ll go back to our Ramsey model, which
we referred to as a general equilibrium model as it allowed the key
decision point of the Solow model - the investment rate - to be de-
termined endogenously. We'll put those stochastic shocks into this
model as well. That, though, requires two new sets of technical ma-
terial. First we’ll have to understand more about those optimizing
consumers and how they deal with uncertainty about what might
happen in the future, and second we’ll introduce a new way of for-
mulating the Ramsey problem that allows us to solve it (numerically)
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with the stochastic shocks involved. That beast will be a dynamic
stochastic general equilibrium (DSGE) model of the economy. It forms
the baseline from which almost any modern understanding of fluctu-
ations is built.

What needs to be very clear is that DSGE models are not models
of what causes business cycles or fluctuations. They are models of
how economies respond to some exogenous source of fluctuations.
The best way to think about DSGE models is like forecasting hurri-
cane paths or major storms. Meteorologists cannot with great reliabil-
ity tell you precisely when a hurricane will form, or how many might
form in the next few months (they try, but they are invariably wrong,
often spectacularly). They can tell you with a shocking amount of
accuracy where a hurricane - once formed - will go. We're engaged
in the same process here, building a model of how economies react to
unexplained shocks, and I'll remind you that one of the main things
we're interested in here is what is necessary in these models to keep
delivering the stable return to trend that we see in the data.

We have to keep in mind how important it is to understand why
modern developed economies are stable even if we don’t have a great
handle on what drives fluctuations. The stability is remarkable in
and of itself, and I'll remind you that it is not obvious. The origin of
macroeconomics was in the Great Depression when a valid question
was whether this signalled the collapse and end of the industrial
market economy that had developed over the course of 1800 to 1930.
While Britain might have claimed around 100 years of experience
with such an economy by 1930 (and even that is debatable) the rest
of the industrial world had, generously, only fifty years of exposure.
Within the lifetime of many people in 1930 were economies that were
poor, agrarian, and stagnant. Hence the question of whether modern
industrial market economies can persist was, and remains, a live
question.

It will be easy to lose track of that doing the technical work behind
the DSGE model. The assumptions will seem pointless and unreal-
istic. The math will seem overly complex. The utter absence of any
consideration of political or social issues will be mystifying. Through-
out this process I want you to keep in mind that you are in this for
the long haul, and this represents only the initial step on the way
to making better assumptions or having more realistic discussions.
For better or worse the DSGE is the vocabulary used to talk about
macroeconomics for the most part. So learn that vocabulary even if
your intention is to ultimately invent a better one.



SHOCKS AND FLUCTUATIONS

9.1 Fluctuations

Data on fluctuations with respect to A. Time series plot and growth
rate to growth rate.

9.2 The stochastic Solow model

Start with the Solow setting so we aren’t worried about how indi-
viduals adjust their investment behavior yet, and let’s focus solely
on how shocks create dynamics in the economy via the capital stock.
To create a stochastic economy with fluctuations we’re going to al-
low productivity, A, to be hit by random shocks each period, and
each shock will only last one period. This will make the productiv-
ity shocks different than in Figure 3.4, where there was a permanent
shock to A(0) the pushed the economy to a higher BGP. Here, we'll
assume that the productivity shocks have mean zero so that the
economy is always fluctuating around the same old BGP.

Assuming that the fluctuations come from stochastic shocks to
productivity is why I said that this isn’t a model or description of
why business cycles happen. This is a purely exogenous unexplained
set of shocks that we model as if productivity is fluctuating. They
are a stand-in for any real economic shock you want to think about,
be it financial, monetary, trade-related, policy-related, or even, as
it happens, to a major natural disaster like a hurricane or a global
pandemic. More advanced models or theories you might look into if
you're interested in this will be much more specific about the nature
of these shocks, but in many ways they always boil down to “the
economy gest more or less productive given the set of capital and
labor it has”. One way to think about these productivity shocks is
that they are capturing capacity use in firms and establishments that
might fluctuate for various unmodelled reasons.

In the regular Solow productivity growth was a deterministic
process, meaning we knew exactly what would happen at every point
in time,

InA; =InAg + gat. (9.1)

Now, what we want to do is to introduce some stochastic element to
this so that we don’t know what A; is going to be at Aj (or at A;_1).
A simple way to do this is to add a stochastic shock to the above
process, as in

In A; :1nA0+gAt+st (9.2)

where ¢; is distributed as a Normal with mean zero and a variance of
2. Of note, this expression says that productivity is always “around
trend” in that A; always starts out at what we’d expect it to be in the
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deterministic case, and then there is some shock. But that shock does
not linger at all into the next period. Just to make this clear, note that

InAjg =InAg+ga(t+1)+e4q (9:3)

does not include any information about A; or ¢; in it. That will make
this the easiest stochastic process to work with, and we’ll add things
to get more complex later.

If we plug this process back into the expression for GDP per capita
we have

Iny; = ‘;—Kant/Yt +InAg + gat + e, 9-4)
L

which looks a lot like our regular Solow model, except now there is
this additional shock to GDP per capita that happens. However, we
have to be careful here because through the capital /output ratio the
process for GDP per capita does “remember” shocks that happen
in the past. For example, if ¢; is a big positive shocks, the GDP per
capita will be above trend and K/Y;;1 will be a little higher than
normal because the economy was a little richer than normal. But then
in period t 4- 1 the economy doesn’t “start” on trend (like productivity
does) but rather above trend. The ¢; shock still matters in period ¢ 4 1.
The key lesson here is that even if we understand the stochastic
properties of the productivity process well, that doesn’t mean we
necessarily know the stochastic properties of the GDP per capita
process well, given that the dynamics of the capital/output ratio
necessarily create a link over time. There are, in rough terms, three
ways we can deal with this:

1. Theory. It’s possible to work out more carefully the stochastic
properties of Iny; for this (or other) stochastic properties of A;.
That involves linearizing the Solow around a steady state. This is
possible, but goes into details that are not of first-order importance
for this course.

2. Simulate and estimate. We could simply plug the stochastic
process for A; and the equations for Iny; and the accumulation
for K/Y into a computer, and run simulations over and over again
where we let a random number generator fill in values for &;
over many periods. We could then just “look” at the stochastic
properties of Iny; that emerge from this simulation. That requires
us to estimate those stochastic properties given data on Iny;,
which is possible, but is the kind of thing that you will learn
in econometrics and, in particular, in macro-econometrics. We
will play with the simulations, but leave the estimation to those
courses.
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3. Assume away the problem. The last option is to assert that this
complication from K/Y is a small enough issue that we can ignore
it. In practice that means assuming that the stochastic process for
A produces “small” shocks, and that the economy is always so
close to steady state that K/Y ~ K/Y*, and is just a constant. Then
Iny; inherits the precise stochastic properties of A;.

For the purposes of this chapter we will take option three, and
assume away the problem. That’s because for the most part it turns
out to be about right, and because the point here is to learn about
stochastic processes, not learn about how to estimate time series
processes econometrically. The stochastic processes and properties
we’ll learn about are useful in a variety of contexts, so trying to only
solve the Solow (or in the future the full DSGE) model is too limiting.

With that in mind let’s assume that the economy is always so close
to steady state that K/Y; ~ K/Y*, meaning the dynamics of the
capital/output ratio are insignificant to us. Then our process for GDP
per capita is

Iny; = x+In A (9.5)

where k¥ = eg/er In K/Y*. This means that
Iny; =x+InAy+gat+e =Inyy+ gat + & (9.6)

Thus in this case our process for productivity can just be translated
directly to the process for GDP per capita.

Now, given this, we can establish some stochastic properties. But
before we get into the math of it, just consider the intuition. GDP
per capita here follows a trend, and again the value of y; in any
given period is based on that trend, and then is shocked away from
that trend. But there is no memory or history to this process. All
it does is create noise around the trend. In that sense this noisy
process is stable, in the sense that it always is centered on the trend
line. The process does not “blow up” or experience fluctuations
that accelerate into complete collapse or infinite growth, which
is consistent with what we think is true about the world. So the
question for our stochastic processes in general is if they “behave”
and keep the economy stable - even if there is noise - or if they imply
collapse or explosive growth.

In the original Solow model good behavior and stability was
ensured by the self-correcting nature of the capital process, even if
it wasn’t stochastic. If the economy moved away from the steady
state for any reason, it naturally moved back towards the steady
state. We’ll want some similar thing to be true about our stochastic
processes. If they experience a big shock (negative or positive) is
there something about the process that ensures it reverts back to
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“normal”. In this initial case that’s due to the memory-less nature of
the shock; it doesn’t matter what happened yesterday at all. For other
more complicated processes we’ll have to evaluate what creates the
same condition.

9.3 Stability and Stationarity

Let’s establish a better definition of what we mean by stability of a
stochastic process. To do that let’s first define a few properties of a
stochastic process:

Definition 9.1 (Properties of stochastic processes) Define the follow-
ing properties of a stochastic process x;

1. Expected value at time t: E[x¢] =
2. Variance at time t: V[x;] = E[(x¢ — pt)?]
3. Autocovariance of length k: E[(x¢ — pe) ((Xp ok — Hrak)]

Our notion of stability is that this stochastic process should “be-
have” around the trend, which informally means we think the ex-
pected value of that process should not change (or not change a lot)
and, perhaps most relevant, that the variance of that process does not
get bigger and bigger and ¢ goes up. We want the noise in the system
to stay contained. If the variance explodes as time goes on then the
process isn’t stable in the sense we want.

Statistically we can define the following property: This definition is for weak stationarity.
Strong stationarity is about the joint
distribution of values of x; realizations

Definiti . i ity) A stochasti i ki
efinition 9.2 (Stationarity) A stochastic process for x; is (weakly) docsn't depend on ! itselr.

stationary if it satisfies the following properties

1. E[x¢] = p, where y is a constant and independent of t

2. V[x¢] = E[(xt — ¢)?] = 7(0) where y(0) is finite and independent of t
3. E[(xt —¢)((x41k — ¢)] = (k) where y(k) is finite and independent of t

In short, a stationary process is a time series of random variables

(x¢) that maintain the same stochastic properties over time. The (k)

things are purely notational laziness. They are just a standard short-

hand way of writing variances and covariances, rather than writing

out things like E [(xt - ]/l) ((xt+k — ‘u) all the time. We can also define an autocorrelation as
A (weakly) stationary process is one where the expected value, 7(k)/7(0), just a scaled autocovariance.

variance, and auto-covariances are all the same regardless of the time

period t. Even for those higher-level auto-covariances, the point is

that their size is determined only by the value of k (how far apart in

time they are) and not by the specific ¢ (the actual time).



Conclusion 9.1 (Stability and stationarity) Define stability of a process
xt as the variance of that process being finite and independent of t, then

1. A process that is stationary is also stable
2. A process that is not stable is not stationary

3. A process that is stable can be either stationary or non-stationary

What this implies is that if we study stationary processes, we will
also be studying stable ones, and invariably that will be what we
study. Note that this is technically more restrictive that we want,
but we’ll see below that we can study a stable time series that isn’t
technically non-stationary, and it won't really change our conclusions
about anything.

Let’s look at a specific kind of process,

Definition 9.3 (White noise processes) A stochastic process x; is called
“white noise” if it has the following properties

1. E[x;]=0
2. E[x?] = v(0) is finite

3. E[xtxp k) = y(k) = 0 forall k # 0.

which means that a white noise process is stationary (and therefore stable).

This is the simplest kind of stochastic process, and in some sense
lots of other processes are built off of manipulations of these white
noise processes. In the example before, the noise ¢; is a white noise
process, and hence is stationary. The variance of ¢; is always ¢Z at any
given point in time and all the auto-covariances are zero, meaning
that &; doesn’t have any statistical relationship with any past value or
future value of the shock - it's “memoryless”.

What about our actual process for GDP per capita, though? The
expected value of that in time ¢ is

E(lny] = Inyp + gat (9.7)

which very much does depend on ¢, so we already know it isn’t
stationary. Moving on, the variance of this process is

V(ny = o? (9-8)

which is constant, so that part is okay. If we did the upper level auto-
covariances we’d see they are all still zero. So this isn’t stationary, but
it’s close.
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No, we're not proving this conclusion.
It can be proved by a more competent
econometrician.
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The problem is obviously this whole trend thing with g4t. But that
is simple to deal with by looking at how the series for GDP per capita
behaves relative to the trend. If we de-trend this process,

Iny: —Inyo —gat = e 99)
then the whole left-hand side - the de-trended GDP per capita - is

just a white noise process and thus is stationary.

Definition 9.4 (Trend stationarity) A stochastic process for x; is trend
stationary if it can be written as

xp = f(t) +2z (9.10)
where f(t) is a deterministic function of t and z; is some stationary process.

Our simple model is trend stationary. It’s essentially just noise
around our typical BGP. This perhaps makes it obvious that we are
not explaining anything about what creates these fluctuations, we're
just assuming they exist so that our model looks a little more like the
data.

9.4 Moving average processes

To take a step closer to something meaningful, we might want to
consider shocks that linger in the economy. We already have some-
thing that does this - the capital/output ratio - but here we’re going
to build in that the actual shocks themselves retain some effect period
by period.

Consider the alternative process

Iny: = Inyg + gat + et + bre; 1. (9-11)

This allows for the prior period shock, &;_1, to still have an effect in
time ¢. The coefficient b; tells us how powerful this effect is. Does
this change our evaluation of the stationarity? First, let’s simplify by
de-trending and calling that detrended variable x;,

xe=Inys —Inyyg — gat = & + bres_1. (9.12)
The expected value of x; is
E[x;] =0 (9-13)

and the variance is
Vixi] = (1+b])0? (9-14)

De-trending here is obvious because
we know the process at work. De-
trending a data series where we don’t
know the process is subject to lots of
assumptions and arguments about
those assumptions.



which is finite and not dependent on ¢ itself. We can also evaluate the
auto-covariance between two observations adjacent to one another in
time

E[x;x;_1] = E[eses_1] + biE[eses_o] + b1E[e2_4] + biE[e;_1€;_ 2] = bio?.
(9-15)
This is finite and doesn’t depend on t.

The process is no longer white noise, but it is still stationary. The
addition of the lingering shock creates some auto-correlation between
x¢ and x;_1, which seems kind of obvious, but this doesn’t make
things get out of control. These shocks aren’t feeding on one another,
so to speak. We can generalize,

Definition 9.5 (Moving average process) A moving average process of
order q, MA(q), is defined as

Xt =p+e€+br€ 1+ b€ o+ ...+ bger—g (9.16)
and is stationary for any values of b;.

We can thus model our shocks to productivity and/or GDP per
capita with any kind of arbitrary set of shocks that continue to have
effects in later periods and still have a stationary series. This is stable
because of the finite number of lags involved. Eventually any shock
that has occurred disappears completely from influencing x;, even if
the values of b, are huge. That’s a big hint. Stability and stationarity
depend on the shocks “disappearing” from influence eventually.

Let’s think about an infinite number of backward-looking shocks,

Definition 9.6 (Infinite moving average process) An infinite moving
average process, MA(co), is defined as

Xp=p+) b (9.17)
j=0

and is stationary so long as } |b;| < oco.

Note that the condition here is just that the combined effect of the
shocks has to stay finite, which in an MA(q) is true by default. The
lesson we have is that our process can remain stable - stationary -
even if shocks have continued effects period after period. These kind
of moving-average shocks don’t create any kind of feedback loop that
could generate unstable behavior. Even if one shock is big, the next
one is no more likely to be big. The fact that the b; terms can’t get too
big just means that shocks can’t have a big effect forever.

SHOCKS AND FLUCTUATIONS
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9.5 Auto-regressive process

A different kind of stochastic process does allow for the possibility
of feedback, and thus does open up the possibility of instability. This
kind of auto-regressive process is very commonly used in economics,
so we'll need to see what kind of properties it needs to stay stable.

Let’s keep working with this idea of a de-trended process for GDP
per capita, x; = In A; — In Ag — g4t. But now we're going to let that
de-trended GDP per capita depend on itself,

Inx; =plnx;_1 + €. (9.18)

The value of p is the auto-regressive coefficient as it determines how
much of an impact the lagged value has on the present. There is also
the truly stochastic element ¢; that is creating noise in the process
that pushes the values away from trend. This process is called an
AR(1), as it depends only on 1 lag of the x; variable.

The question here is what kind of conditions on p make this
stochastic process act in a stable manner, meaning it acts like our
regular Solow model with an exogneous shock. Let’s assess this
new process for whether it is stationary. To do this we’re going to
iterate this process out so that we can look at x; in terms of xy and
the set of shocks between o and ¢, which it should be intuitive will all
matter. What this shows us is that this x; is just a summation of all
the various shocks back to time ... negative infinity.

e
Xp =€t 4 perq + %t o+ o+ 0¥ o = Z pjet_j. (9.19)
j=0
Does it make sense to think about a process running back to negative
infinity? Not really, but in principle we can think of things working
this way.

There are a few ways of assessing this auto-regressive process.
First, note that as written above this is now just a moving average,
and we know how to assess the stationarity of a moving average.
This process will be stationary if

Z |pj| < o0. (9.20)
=0

Note that this is just the summation of the values of p, ignoring the
¢ terms. If these terms stay finite then we know the series doesn’t
get out of control. Now, in this case the coefficients of the moving
average have a clear structure, as opposed to just being a series of b;
terms.

This is an infinite sum, and we can manipulate the absolute values,

The deterministic Solow model is
already auto-regressive in the sense
that the t — 1 value of GDP per capita
influences the t value via the K/Y ratio.
It’s stable because of the dynamics of
K/Y.
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so we get
210 = 3 lol (9-21)
j=0 j=0

and if |[p| < 1 then we have

s 1
Llel = = < 922)

This process is stationary if the values of p are not too big. It’s non-
stationary if |p| > 1 because eventually the process “blows up” to
infinity.

In the end, the auto-regressive process is stationary if the auto-
regressive parameter p is below one in absolute value, meaning the
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shocks are dampening over time. More general AR processes that depend

on an arbitrary number of lags are
Definition 9.7 (Stationarity of AR(1) processes) An AR(1) process for discussed in A.18.

Xt = pX_1 + & is stationary if |p| < 1 and &; is white noise.

We can work with an AR(1) process that has p = 1. In this case the
process for GDP per capita would look like this

Inxy =Inx; 1+ & (9.23)

The value of GDP per capita (relative to trend) is just last period plus
some shock, and there is nothing pushing this back towards that
presumed trend. This process has a “memory” in that all the past
shocks are always relevant (as opposed to the dwindling impact of
past shocks in a stationary AR(1) process). This type of process has a
name:

Definition 9.8 (Random walk) A random walk is a stochastic process of
the form
Xt = X1+ € (9-24)

where ¢y is white noise. This process is not stationary.

You can work out that this is not stationary by looking at the
variance, which is V[x;] = ¢?t, and obviously expands continuously

with time. We often refer to random walk process
However, if one takes the first difference of a random walk, we as having a “unit root”, which refers
to how we evaluate AR processes for
have stability, but in practice you can think of
Xt — Xp_1 = €&t (9.25) a unit root as meaning p = 1.

which means the change in x; is stationary.

Definition 9.9 (Difference stationarity) A stochastic process for x; is
difference stationary if it can be written as

Xp— Xp—1 = 2t (9.26)

where z; is some stationary process.
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For the case of GDP per capita, if we thought that the level of
GDP per capita was related as in the random walk, and thus was
not stationary, we might still think that the growth rate of GDP per
capita - the difference in log GDP per capita - was stationary and
stable. This would mean that there is no tendency of the growth rate
to explode, even though we can’t necessarily call the path of GDP per
capita stable.

Note that it isn’t immediately obvious from the data on the level
of GDP per capita that we should use either an AR(1) with p < 1 or
a random walk as the right model. We presume that there is a trend
in GDP per capita - the BGP - but it could just be a realization of a
random walk process. Econometrically, one should be able to test for
which model is correct, but in practice this turns out to be difficult
because a process with p ~ 0.9 is stationary but looks a lot like one
with p = 1 even over a long time frame.

9.6  Impulse response functions

A standard object of interest is something called an “impulse re-
sponse function” for things like GDP per capita, it's growth rate,
the capital/output ratio, and other items of interest in the economy.
You've already created impulse response functions, as they are the
graphs of what happens in response to a single shock to the economy
in “period zero” in a typical homework problem.

Even though all our stochastic processes (AR, MA, or ARMA)
get shocked every period, the general way to “see” how shocks
propogate is to do this kind of homework problem for the model.
That is, assume there is a single shock at time one, ¢1, and then all
future g = 0.

Definition 9.10 (Impluse response function for AR(1)) For a station-
ary AR(1) process x;y = p + pxy_1 + &; the impulse response function is the
series of derivatives of x; for j > t with respect to the shock in period t, e¢.

0Xt4
—
5 (9-27)

Perhaps not a surprise, but the effect of a shock to & on x4 is just
the autocorrelation, pj , between those periods.



10
Uncertainty

Adding shocks or fluctuations to the standard Solow model via
productivity leads to a model that can at least replicate something
that looks like the data, but as before there isn’t any allowance for
the idea that people make decisions about s; and/or g.. The idea that
people would not respond or react to these fluctuations seems wrong.
Knowing that there is a chance of a bad outcome or good outcome
could, at least in principle, influence what people choose to do. Here
we're going to introduce that uncertainty into the individual decision
process and see that there are reasons to believe that this will affect
their behavior in predictable ways.

There are two principles we can think about in this context. The
first is that people will choose g, based on their expectations of what
will happen, and that as shocks occur they’ll make adjustments.
There will be a plan, and then there will be reality. In terms of the
kind of solution we find for individual behavior, this means there
isn’t a full lifetime path. We can’t solve for the whole stable arm,
so to speak, because we don’t know what will happen at any given
moment. The nature of the consumption choice people make with
uncertainty is that it takes the form of a rule or algorithm. If good
thing happens, do this. If bad thing happens, do that. That rule will
help maximize expected utility given the expectation of shocks, but
there will be continuous adjustment as shocks are revealed, and
consumption and utility will not end up equal to expectations.

The second principle is that the presence of uncertainty will in-
duce additional savings relative to a certain future. It's not just that
individuals will choose E[g.]| equal to the growth rate of consump-
tion with certainty, it’s that they’ll raise E[g.] - have lower present
consumption - because they will want to insure themselves against
future bad shocks. Marginal utility falls as ¢ goes up, so a bad shock
hurts more than a good shock feels good. Because people don’t like
the bad shocks, they’ll consume less today (when they have certainty)
to give themselves more consumption in the future (when they face
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uncertainty). This is called precautionary savings and it means that
the answer to the full forward-looking value function Ramsey prob-
lem is not just the solution to the regular Ramsey problem with some
stochastic shocks attached (like it is with the Solow).

10.1 Intuition

Go back to the situation where we just think about picking c; and
cp, as in Section 4.3. If people made a tiny change to consumption
today, dcy, then they’d lose U’(cq)dc; in utility. They’d gain what?
—dcq(1+ r) in consumption tomorrow, and what’s the utility value of
that? Well, now with uncertainty it depends on what consumption in
period 2 looks like. Instead of knowing that we have U’(c;), the best
we can say is that marginal utility is E[U’(c;)] because maybe there
was a bad shock (and marginal utility is big) and maybe there was a
good shock (and marginal utility is low).

If we knew the expected value of marginal utility we’d know that
in equilibrium you’d choose

E[U'(c2)]

u'(cq)dey — 116

dCl(l + 1’) =0.

That’s fine and that gives us an Euler equation like before of

E[U'(c2)] 1+86
Ufq) 147

(10.1)

Like before, we can approximate U’(c;), but now we’re going to
do a second-order approximation. We could have done this before,
but the second order terms all drop out because there isn’t any
uncertainty. Here, they’ll still matter.

1
U' (14 ge)er) = U'(cr) + U" (c1)der + EUW(Cl)(dCl)2~
In expectation that is
1
E[U'(c2)] = U'(cq) +U" (c1)c1E[gc] + EUW(CQC%E[SQ' (10.2)

and in the Euler equation that gives us

U (c)cq 1U"(c1)ef . 9y

There’s some tedious algebra but we can re-write this as

—U'(c1)

1-U"(c1)eq
s~ e, 0 2 e

=0+ 5 (o)

E[gz). (10.4)
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Feels like we have not accomplished much. But we’ve got the intu-
ition we need. On the left is now just the expected value of consump-
tion growth. That’s an expected value because we don’t know what’s
going to happen in period 2.

On the right, we’ve got a few familiar things. The first term is
the typical growth rate of consumption, under certainty, which
depends on the IES and the gap between r and 6. Nothing new
here. But we're adding a second term to this. That term involves two
things. The first is the E[¢2], which is kind of like the variance of
consumption growth (but not the actual variance). This is measuring
the possible “noise” in consumption growth that occurs because of
uncertainty. If the possible shocks to c; are big, then E[¢?] will be big
as well.

The second terms is this fraction which deals with the nature of
the third(!?) derivative of the utility function.

Definition 10.1 (Coefficient of relative prudence) The coefficient of
relative prudence (CRP) is defined as

—U"(c1)ey

RP =
C u//(cl)

and measures how sensitive marginal utility is to changes in consumption.
The CRP measures whether U'(c) is convex (CRP is positive) or concave

(CRP is negative) with respect to c.
Our typical CRRA preferences with

We can make this statement about how people consume based on U(c) = c'"7/(1 — o) have a CRP of
1+ o. That’s positive, so people with
the CRP. CRRA preferences act prudently and

. . . o save extra when uncertainty is present.
Conclusion 10.1 (Prudence and precautionary savings) If individuals

have a CRP > 0 then their expected consumption growth E[g.] with
uncertainty is greater than g, with certainty. That implies that individuals
save more when uncertainty is present.

A useful way of seeing what is going on here is by plotting out the
marginal utility curve, as in Figure 10.1. The marginal utility curve,
U'(c), slopes down, which is just the assumption of diminishing
marginal utility. Mathematically that negative slope occurs because
U”(c) < 0. In the Figure I've drawn the marginal utility cuve as
convex to the origin, which is due to the fact that U"”'(c) > 0, or the
second derivative of marginal utility is positive. A positive CRP is
saying that this is what the marginal utility curve looks like.

In practice, that means marginal utility falls as ¢ goes up, but that
the decline slows down as c gets higher, creating this convex shape.
Once consumption is high enough marginal utility falls, but not by
a lot. That’s going to create the incentive to save more. To what’s
going on, consider the uncertainty plotted in the figure. The person
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faces either ¢’ or ¢/ in the second period of life (say with 50/50
probability). The expected value of their consumption is around 2.5
here. The marginal utility of expected consumption, U'(E[cy]), is on the
marginal utility curve.

But they’ll never actually consume E|cy]. They’ll get either the
high or low outcome. The marginal utility of the low outcome is
very high because of the positive third derivative, while the marginal
utility of the high outcome is low, but not that much lower than the
certainty case. The expected value of marginal utility, E[U’(cy)], is the
probability weighted average of the two marginal utilities, and it is
distinctly higher than U’(E[cy]). Because of the shape of the marginal
utility curve this person expects their marginal utility to be very high.

In the Euler equation, a very high marginal utility in the second
period says to move more consumption towards the second period.
In other words, this person needs to lower ¢; and save more in order
to raise the expected value of consumption in the second period to
offset the fact that their marginal utility in period 2 is quite high
because of the uncertainty. You can think of what this person is doing
is sliding the consumption here to the right so that the distinction
in marginal utilities is not quite as big. Precautionary savings is
essentially self-insuring against future risk.

Figure 10.1: Marginal utility and
precautionary savings



10.2  Expected savings

Let the uncertainty hitting this economy be such that log produc-
tivity is what is fluctuating around a trend, so that we have a trend
stationary process for In A;. In other words, we’re going to let

InA; =InAg+gat + x: (10.5)

where x; = px;_1 + & with p < 1 and ¢; be white noise, so that x; is a
stationary process. That means that log GDP per capita is

Iny: =ex/erInKe/Ys +1In Ag + gat + x¢ (10.6)

is also a trend stationary process.

Consumption in this economy would be, at any given point in
time, In¢; = In(1 — sp¢) + Iny;, so consumption is also going to be
trend stationary. What we’re after here is some sense of what that
implies for the level of savings and the implied expected value of the
rate of return, using what we know about consumption from above.
That Euler expression depends on E[g.] and V[g.], so let’s evaluate
those.

First, note that g. ~ AlInc;, where I've used the A to be clear we're
thinking of a discrete time change, and not a derivative. So we’re
after E[AInc¢;] and V[Alnc;]. We're only going to evaluate these
“close” to the steady state or around a balanced growth path. That is,
what are the long-run effects of this uncertainty on the rate of return
and savings? For short-run effects we’d have to be more careful with
things.

Around a BGP s; will be stable, so E[Aln¢;] ~ E[AIny;] and
similar for the variance. What's the difference in log GDP per capita?

Alny: = g4+ X471 — Xt (10.7)

because we are close to the BGP and so the capital /output ratio isn’t
changing a lot. The expected value of this is

E[AIny:] =~ ga + E[xs11] — E[x¢]. (10.8)

What's the expected value of the AR(1) process we're working with?
We know from prior work that the AR(1) is just a moving average
over infinite shocks in the past

X = ijgt—j (10.9)
j=0

o
Elx)] =0 (10.10)
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for any period ¢ (including t + 1) and

(o) ‘ 0_2
Vix] = o? sz] =1 _Epz (10.11)
j=0
while we are at it.
Therefore,
E[g] ~ E[Alnc] ~ E[Alny:] ~ ga (10.12)

or the expected growth rate of consumption is just g4, which should
make some sense. We're just bouncing around a trend line. At the
same time, the variance of this thing is not so obvious. we need to do
a little work here because what we want is

VIAIny| = Vixpiq] + Vxi] — 2Cov(xp41, x¢) (10.13)
where the minus sign comes from the fact that x; is subtracted. Fill-

ing in some things we know

2

lop
V[Alny:] = 21 _£p2 —2Cov(pxt + €441, Xt) (10.14)

and applying rules for covariances out we get

2 2 2
N o e 20}
V[AIny;] ~217p2 zpl—p2 s (10.15)
Which means in the end we have that
Vigd] ~ V[AIne] ~ V[Alny] ~ 207 (10.16)
8c| =~ t| =~ Y| = 1 +p. .

Now, go back to the approximation of the Euler equation and let’s
talk about what this implies will be the rate of return in expectation
along the balanced growth path.

(r—0)+ %(1 + 0)E[¢?]. (10.17)

1
E[gc] ~ -

One thing we have to do is deal with this E[g?] thing, because that
isn’t quite a variance. But the definition of a variance is

Vige] = E[g?] — E[g]? (10.18)
SO we can write
Elg] ~ (17(7 —0) + %(1 +0) <V[gc] + E[gc]z) . (10.19)

Plugging in what we know

1 2
g 1+p+§(1+o’)gA. (10.20)
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Solve this for r and you get

2
%e 1(1 +0)g4- (10.21)

=~ 60— (1
rRoga+ (+U)1+p 5

That’s a lot. But note that it contains all the intuition from the non-
stochastic case. If 0, is zero and there are no fluctuations, then this
retains the idea that r =~ 0 4+ 0g4, except that this extra little term is
also now hiding in there with respect to g%. That arises because we
did a second-order approximation to the Euler equation, and even

if there is no noise, we’ve added something here to the mix. To a
second order, people care about the curvature of their utility function,
and if g4 is big, then this means the growth of consumption will be
very large in steady state. Large growth makes people with big o
values unhappy to some extent, so they save a lot (have low r) so that
their consumption will be very big in steady state and then the utility
differences that g, creates across periods are not as bothersome. It’s
the same logic as uncertainty, just applied to rapid growth. In this
sense you can justify or think about why savings rates would be
high even in places with rapid growth (where otherwise you might
imagine they would not bother).

But onto the uncertainty part. Here, the bigger is the variance
of the shocks, 03, the less people like it, and the value of ¢ here (I
know) dictates how much they hate it. The uncertainty bothers them
because they’d prefer to have smooth consumption. So what they do
to respond is save more, meaning k/v is higher, meaning r will be
lower along the BGP. If the shocks are big, then saving means higher
average consumption levels (remember, we’re below the Golden
Rule) and therefore the disruption of the shocks is not as bad because
utility has “flattened out”. You save to make yourself feel rich to
self-insure against the shocks.

Note that if p goes up then the implied size of this effect is lower.
That is, if the shocks are persistent, then there is a smaller effect on
r. Why? Because high p means smooth consumption. If the shocks
aren’t big but are persistent, then you get what you want, consump-
tion is similar period by period because each shock lasts and contin-
ues to push up (or down) your consumption for many periods. All
o is doing is saying you want smooth consumption, it doesn’t care
about the level.

Ultimately, the point is that what dictates the BGP level of r, and
hence all the BGP values of k/y and s;, which recall are just

k\* €
<y) == —I|<—(5 (10.22)

which comes from the definition of the rate of return. Once we’ve

pinned down r* we know what the level of the k/y ratio is that
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supports this. You could plug in to see that

) - -
y UgA+9—(1+U)l‘jﬁp—%(1+U)gi+(5

if you don’t like yourself. All the adjustments to r for uncertainty
mean k/y responds in the long run as people try to smooth consump-
tion. That also shows up in the savings rate, which has to be the right
rate to hit that k/y ratio. Remember, it has to be that in the end

*
51

<k>*— (10.24)
y 0+g8r+8a 24

just due to the Solow mechanics of the capital stock. This only ever
holds in steady state (even in the Solow model), and it is what relates
the savings rate to the production side restrictions on k/y including
population growth. But since we know what k/y ratio people want
from their need to smooth, we know what s; they have to choose to
support that, or

€K
UgA+97(1+0)1‘7fp —l1+o0)gy +9

s; = (6 +8L+84) (10.25)

If we can pin down the rate of return using the Euler equation, we
can pin down the steady state of everything else. Note how r* moves
inversely to both k/y and sj, and that was true with or without
uncertainty. All uncertainty is doing is making this something like
E[r*] along the BGP because we'll always be bouncing around it.

Here’s where you can see that higher variance in the shocks raises
the s; along the BGP. In addition, we’ve learned that because of
second-order effects, if g4 is very big that will also raise the s along
the BGP.

10.3 Value function

We want to incorporate this kind of intuition into our larger dynamic
model, where individuals make decisions about consumption over
time, subject to a series of shocks. We’ll have some work to do in
the next section to describe those shocks in a better way, but for the
moment let’s just think about there being two possible shocks to
productivity, good and bad, so Afhgh or AL®. The probability of
each is p and 1 — p, and these shocks are i.i.d. in that there is no
persistence in them and the past values don’t matter. This is a crude
“white noise” kind of thing.

This is where the Bellman equation approach becomes valuable.
Let’s write down two value functions, one for each state of productiv-
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ity at time ¢.
v(k, Low) = max [u(yLow +(1-6—g)k—K)+ ﬁE[v(k’)]]
v(k,High) = max [u(yHigh +(1—=6—g)k—k)+ ,BE[v(k’)]] .

Note how the state shows up. If we’re in the Low state, that is af-

Low "and similar for the good state.

fected y via productivity, so it’s y
The maximization problem is different depnending on whether you
have a good or bad shock, and it’s different because it changes your
set of resources you can work with. But note that we know the state
we’re in here.

The other part of this is that the value function depends on the
expected value of K’ in the future, E[v(k")]. That's like our intuitive
approach above where we cared about E[u'(c;)], and like above it’s
what creates some issues in working with this. We can characterize

that expectation, though
E[v(k")] = po(K, High) + (1 — p)v(k’, Low) (10.26)

which means that both of our value functions v(k, Low) and v(k, High)
depend on both possible future value functions with k’. That also
should make sense. When I make a decision today about k’, I have
to take into account the possibility that tomorrow I'll wake up and
either be in the good or bad state. The logic from before says that
relative to a situation with certainty we’ll increase k’ because we want
to self-insure against the bad state.

We could also put this in terms of a single “state” variable S,
which is either AM&" or ALV, and then we could write a single value
function of

v(k,S) = max [u(y(S)+ (1 —6—gL)k— k') + BE[v(K',S)]] . (10.27)
Either way, what we're doing is saying that the value of having k
today conditional on being in state S is equal to our normal maximiza-
tion problem, which takes S as given, and trades this off against the
expected value of k' in the future.

Before we operationalize this, we’ll put some more formality on
how these shocks work.

10.4 Stochastic shocks

To extend this concept out over an indefinite period of time, all the
way up to infinite periods, we have to do a little work in defining
how the stochastic shocks (to productivity, but could be other things)
work. We already know about stochastic processes like AR and
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MA processes. What we need to do here is introduce a means of
talking about these in terms of a discrete set of shocks as opposed to
a continuous one. In the stochastic material before, €¢; was a shock
that was distributed normally (or log normal) meaning it could take
on any value between minus infinity and infinty. It's not plausible to
create an infinite number of value functions for all possible outcomes.
Instead we're going to discretize the uncertainty, and in the simplest
form to two states (e.g. good or bad).

We'll start with some additional definitions.

Definition 10.2 (Markov property) A stochastic process x; satisfies the
“Markov Property”, or is called a “Markov Process”, if for all t

P(xpyq|xe, xp1, ey x0) = P(xpy1]x1). (10.28)

The Markov property says that a random variable next period only
depends on todays realization of the random variable, and no earlier
realizations. If you think of shocks in the future (x; 1), present (x¢),
and past (x;_1 and earlier) then what we’re saying is that the future

shock depends only on the present, and not on the past. An AR(1) process like x; = px;_1 + ¢

satisfies the Markov property. The only

realization that matters is from t — 1.

for our purposes. In contrast, an AR(2) process does not
satisfy the Markov property.

The Markov property is quite general, and we’ll narrow this down

Definition 10.3 (Markov chain) A stochastic process x; is a “Markov
chain” if

e [t satisfies the Markov property
® Pr(x¢i1)|xt) does not depend on t (e.g. it is stationary)
* x; is drawn from a finite set of values S

Basically, a Markov chain is a discrete state space stationary
stochastic process that satisfies the Markov property. Because a
Markov chain has a finite number of values it can take, we can define
a transition matrix that is dimension S x S which tells us what the
probabilty of moving from state 1 to state 2 (or 3 or 4) is, and the
probability of moving from state 4 to state 1 (or 2 or 3 or whatever).
To be clear, S is the set of values that x; can take, and the transition
matrix is the probability of any given state happening, given the
information on the current state.

Definition 10.4 (Transition matrix) The transition matrix Q of a
Markov chain is an S x S matrix with the following properties.

* Element q; is defined as q;; = P(x;11 = Sj|xt = S;).

* For each row i (e.g. value that x can take) the row sums to one, }; 9ij =
1.



o There is no restrictino on the sum of a column

An example of a Markov chain would be a state space S = {—1,1}
so that x; can only ever be -1 or 1. The transition matrix, which we’ll
denote by Q, could be formed like this:

[ 374 1/4
Q= [ 1/5 4/5 ] (10.29)

The row indicates the current state, so row 1 refers to the state where
xt = —1 and row 2 to x; = 1. The first column indicates the proba-
bility of x;;1 being in the -1 state and second column to being in the
1 state. As you can see, rows have to sum to one, as given today’s
outcome, x;11 has to take on some value. But the column need not
sum to one, and their relative size indicates which state is more or
less likely in the future.

Markov chains are handy because they have nice simplifying
properties, because the Markov property removes the dependence on
multiple past realizations. In short, you can just apply the transition
matrix an arbitrary number of times to find out the probabilities an
arbitrary number of periods in the future.

Conclusion 10.2 (Arbitrary period probability) Given x; is in state i,
the probability of state j being the realization of x; . is Qi.‘]., the i-jth entry in
the transition matrix to the kth power.

The transition matrix Q gives you the conditional probability of
j occurring given x; is in the i state. What about the unconditional
probability of j occurring? A different way to think of this is what the
long-run distribution of values of x; will be.

Conclusion 10.3 (Unconditional distribution) The vector P is the S x 1
vector of unconditional probabilities of each state occurring (or alternately
the expected share of periods spent in each state). Given a Markov chain
with transition matrix Q, that vector is defined by

P=Q'P (10.30)

And now that we know all this about Markov chains, let’s connect
this back to our more flexible stochastic process, the AR(1). It can be
shown that

Conclusion 10.4 (Markov representation of AR(1)) The AR(1) process
Xt = pX;_1 + & with variance o2 for the shock can be approximated with a
Markov chain where X X
-0, o
S = |:1;)2, 18{)2:| (10.31)
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and the transition matrix is
1+
Q = [ 1

Note that an AR(1) approximation has a transition matrix that

] N‘
=) =)
—_ =
+m‘ |
E=) E=)

1 (10.32)

N‘
N‘

is symmetric in the sense that the columns sum to one, meaning
that you have an equal chance of either state. That should fit the
intuition on AR(1) processes. The shock was normal around zero.
There was an equal probability of a good (positive) or bad (negative)
draw. That’s retained here. The persistence of the shock (the p) value
shows up in the transition matrix. If p is close to one, then once you
are in a state you tend to stay there. And if p is close to zero it’s just
completely random. Note that p also influences the two states. The
higher is p the bigger the shocks are, which is capturing the fact that
if p is big you are carrying around the persistent effect of past shocks
with you.

Conclusion 10.5 (Properties of Markov AR(x)) The AR(1) process
Xt = pX;_1 + & with variance o for the shock can be approximated with a
Markov chain with a long-run expected value of

Elxi] =Py 1_‘752 + P UEPZ = (= P1); agp2 =, (1033)
and a variance of
2 o? ’ 2
Vi) = Bl — o) = [1255] (1--R)?)  os)

Think of these properties as being the expected value and variance
along a balanced growth path over many iterations of the process, as
opposed to the expected value or variance of next period’s shock. The
variance depends on how noisy the white noise is, naturally,

10.5 Value function iteration with shocks

It turns out that our simplistic two-state shock is not that simplistic,
and we can approximate a lot of things with is. So let’s go back to
this characterization

ok Low) = max [u(yww +(1-0—g)k—K)+ /sE[v(k')uow]}
olk High) = max [u(yHiSh +(1-0—g)k—K)+ ﬁE[v(k’nHigh]} .

where now we know that Low and High could refer to the outcomes
of an AR(1) process that we approximated with a two-state Markov
chain with some state space S and transition matrix Q.
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We have to be a little careful here. Note that the expectation terms
are now altered. In v(k, Low) we have E[v(k")|Low], and that’s be-
cause we're taking the expectation of the value of having k' condi-
tional of having the Low state today. We need this because the probabil-
ity weights inside that expectation may not be identical to those in
E[v(k")|High]. The Markov transition matrix is what tells us how to
form those weights.

E[U(k/> |L0w] = QLow,Lowv(k/r Low) + qLow,HighU(k// High)
E[v(K')|High] = qHigh Low? (K, Low) + qriigh,Hignv(K', High)

Like our original problem, we are kind of stuck here, and like our
original problem we can get an answer using value function iteration.
We're just going to iterate through two Bellman equations.

e Start with an initial guess of the value functions, like vy(k’, Low) =
0 VK" and vy(k’, High) =0 Vk'. The subscript 0 here refers to the
iteration of our guess about the value function, and not to a time
period.

¢ Solve the two problems, vy (k, Low) and v1(k, High) given the
guesses for vg. Thus we're solving for what the planner would do
if they had k, and either value of productivity, given the vy value
functions.

e Iterate again, and solve the problems for v, (k, Low) and v, (k, High)
given the functions/lists v; from the prior step.

¢ Continue until both value functions have converged (not to each
other, each to their individual long-run answer) v]-(k, Low) =~
vjy1(k, Low) and v;(k, High) ~ v, 1(k, High).

Before we needed the computer to figure out the stable arm,
because the Bellman equation (or the Lagrangian or Hamiltonian)
didn’t have a nice solution. But given the computer, we could solve
for the whole stable arm. Here, we’re going to use the computer to
solve for the value function, and that in turn will implicitly give us
the policy functions, g(k, Low) and g(k, High). But that’s it. We can’t
solve for a “stable arm” because every period there will be a shock.
The best we could do is use the computer to simulate the economy,
using a random number generator to give us a series of shocks. With
uncertainty the key is to be able to understand how the decision
process works.
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11
Linearizing and solving the Ramsey

These notes are just about linearization and are not new material
you need to know for a midterm or the comp. They are very rough
and are only intended to help understand the script we’ll use in
class.

We’ve had several long-winded ways of evaluating and solving the
Ramsey model. The forward looking problem (AD equilibrium and
trying to pick cp) as well as the recursive problem (Bellman equation
and value function iteration). Those are just ways of “seeing” the
problem and finding a way to a numeric solution given that there
isn’t an obvious equation one can write down for ¢g (or any c;) given
the initial conditions.

There is yet another way to solve the Ramsey model which in-
volves cheating. Not really cheating, but solving it in an approximate
way near the steady state. That means we’d ignore some of the non-
linearity that happens “far” from steady state, but if we're willing to
believe that the shocks or changes that hit the economy are not too
big, this would be fine. More to the point, this retains all the impor-
tant intuition about how various parameters change the outcomes
and transitions speeds in response to shocks.

Doing this requires a lot of mathematical machinery. You have
to take a first order Taylor series expansion of the Ramsey model
around steady state to get a linear system of differential equations.
Then you have to use standard techniques for solving linear systems
of differential equations to find a final solution, and that involves
things like eigenvalues and eigenvectors. Tedious, but possible. In
the end what you get is an expression like the following for the exact
time path of the capital/output ratio.

(k/y)e = (k/y)* + e ((k/y)o — (K/y)") (11.1)

or the capital/output ratio can be written as a weighted sum of the
initial and the steady-state. The weight evolves with time, and given
A > 0, the weights evolve such that when t = 0, (k/y): = (k/y)o and
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as t — co we have (k/y); = (k/y)*. Thus we get the expected result
that the capital/output ratio slowly transitions to the steady state
from any jinitial value we start with. The value of A is a collection of
parameters that arise out of the Taylor series expansion and solving
the differential system, but for the moment just accept that this
format works.

From this you can also get things in log terms and then growth
rates. What I mean is that

(k/y)e—(k/y)* _ _xe(k/y)o — (k/y)*

In((k/y)e/ (k/y)*) ~ (k/y)* ~e (k/y)*

(11.2)

and therefore
In(k/y): = In(k/y)" + e *(In(k/y)o —In(k/y)).  (13)
Given this form, the growth rate of the capital/output ratio is

gxy ~dIn(k/y) = Ae M) In(k/y)* — e MIn(k/y)o = Ae M (In(k/y)* —In(k/y)o)
(11.4)

so that the growth rate is positive when the economy is below steady

state, In(k/y)* —In(k/y)o > 0, and the growth rate slows down as t

gets bigger and the economy gets closer to steady state. If you want

to think of the gx/y diagram from the Solow model, then what you're

thinking about is graphing gxy against (k/y)o, or what is the growth

rate for any given state of k/y. That curve is than evaluated at t = 0,

gy ~ A (In(k/y)* —In(k/y)o) (11.5)

which is now just a line with a negative slop. This is linear in logs,
which means it isn’t necessarily linear in k/y itself. because we did
the Taylor series expansion. Given that A moves with parameters
(like 0)) we can evaluate how this curve compares across economies.
Regardless, note that this system is stable so long as A is positive,
because then the as k/y goes up, gxy goes down.

Given that result, everything else can be inferred from the dy-
namic budget consraint and the Euler equation.

Iny; = E—Kln(k/y)t +1InAg +gat, (11.6)
L

and we know exactly the path for this now, while for consumption
we can work in several ways to get that. One way is to note that we
have this relationship

S]

8Ky = €r (k/y —(0+ga +8L)) (11.7)

which defines gky in terms of the savings rate, and so we can re-
arrange and see that we could write

st = (gry/eL+ (0 +8a+g1)) (k/y): (11.8)
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and we know how to calculate both gxy and (k/y); in terms of
known entities now. The ambiguity in what happens to the savings
rate comes because we know (if we are below steady state) that
(k/y)¢ is growing over time (pushing up on the savings rate) but gxy
is going to be falling over time as we approach steady state (pushing
down on the savings rate), so it’s a race between those two for what
happens to savings. Given sj; and Iny; we could easily solve for Inc;.

Inci =In(1 —sp) + Inyy, (11.9)

and that includes for cy. So we know how this all works.
We know that
Ry = ex(y/k): (11.10)

(or alternatively that it is R = sxy/k), so that we can solve immedi-
ately for R and r; = Ry — 4. Note that once we have this we can solve
for

8et = %(eK(y/k)t —6—190) (11.11)

and we know the growth rate of consumption at each point in time.
We could have gotten that as well from knowing Inc;, but this is an
immediate way of seeing it.

What this amounts to is that we can characterize the response
to any shock if we can characterize what it means for (k/y)* and
In(k/y)o at the point the shock occurs. The other thing we need to
know is that the shock does immediately, which includes what it
does to In(k/y)o. But it also might include that prior to the shock we
were on an old BGP (a different (k/y)*) or had a different level of
In AO .

For all intents and purposes, if you work with this setting, taking
the value of A as some given, then you can solve the entire Ramsey
model for all periods, including cy.

11.0.1 Comparing o

If we’re comparing economies with different ¢ values, then one of
the problems we’d have was ensuring that ¢ is only influencing the
transition path, and not the steady state itself. The way to ensure this
or to assume that this is the case is to assert that both economies have
the same r* regardless of the value of ¢. Since

r"=0+4+0g9a (11.12)

this amounts to assuming that 6 differs between them by just the
right amount to offset the difference in ¢. If you let g4 be different
this would have additional effects on things (and they’d be hard
to compare). So in essence a high ¢ economy that is unwilling to
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substitute has to be a little less patient in order to end up with the
same r* as the low ¢ economy. That's fine, as it ensures they have the
same (k/y)* and that we can plot or compare them to one another in
an easy way.

The difference in ¢ shows up in the A parameter on convergence
speed. In the derivation below you can see exactly how it influences
this, and it’s complicated, but in practice what happens is that when
o is high, A is low (convergence is slow) while when ¢ is low, A is
high (convergence is fast).

11.0.2 Uncertainty

This works with stochastic shocks as well. All the above equations
would give us the time paths of the expected values of things like y;
and ¢; and k/y. We could solve the above equations and then add
in a stochastic shock to y; if we wanted to generate an example of a
time path for GDP per capita (or other variables).

The stochastic shocks did add a term in the Euler equation, so that
now we have

E[get] = %(eK(y/k)t—5—9+Z) (11.13)

where Z is just some parameters that govern how noisy the shocks
are (remember how the AR(1) showed up). By adding this in here,
we know that in steady state it would have to be that in steady state
where E[g:t] = g4

ex(y/k)* =64+0+094a—2 (11.14)

or
k/y) = (11.15)
Y 5 0tog4—2 15

is higher than in the certainty case because of Z being here. This also
means that savings must be higher to support that higher k/y ratio.
For our purposes all Z does is push up the savings rate, push up the
BGP of GDP per capita, and push up the BGP for consumption.

11.1  Solving linear differential equation systems

In principle, you can stop reading now. Everything that follows is
how to get to the equation in (11.1). If you take that equation on faith,
and pick a value of A, you can solve the Ramsey and evaluate the
consequences of any shock. You can also use it to infer what could
have explained any data series you are looking at. All the nuance of
the Ramsey gets shoved into the A parameter. If you want to know
how to get to that, everything else in these notes tells you that.



LINEARIZING AND SOLVING THE RAMSEY

Take the simplest version of this first. Let’s say you have a linear
differential equation of dx = ax + b, so that the change (with respect
to time) of x depends on x itself, and a and b are constants. We're
looking for a few things. What is the steady state? Is that steady state
stable? Can we characterize the value of x at all points of time? Here
the answers are pretty simple.

First, the steady state is where dx = 0, so this is when x* =
—b/a. Stability requires a little more work, as now we need to know
whether x will approach the steady state or not. To see this, we’ll
make the first adjustment to notation which is to look at everything
relative to the steady state, so let

z=x—x" (11.16)

be the variable denoting how far from steady state we are. Then it
follows that
dz = az (11.17)

because dz = dx and az = ax — ax* = ax —a(—b/a) = a+ b. Anyway,
now that we have a differential equation without the bothersome
constant, we can immediately see that it implies

dz/z=a (11.18)

or that the growth rate of z is constant. The gap between where we
start and where we end up will grow at a constant rate. We want that
rate to be negative so that z approaches zero. But we already know
that this system has a solution of

z; = zpe™ (11.19)

because this is just exponential growth. The initial value zg = xp — x*
or how far we start from steady state. Knowing what we know, we
can write this as

xp = x* +e"(x — x¥) (11.20)

ast at

so that the value of x; approaches x** only if 2 < 0 and the term e
goes to zero over time. We know exactly what x; will be at each point
in time, and we know that this depends in part on how far from
steady state it starts out.

One last thing to establish, which will seem trivial, is that if we

scale our modified system by some constant v, like this
z1/v = zo/ve™ (11.21)

then nothing changes about the solution for steady state or about the
assessment of stability. If 2 < 0, then as t goes to infinity z;/v — 0,
meaning it must be that z; — 0, or this system goes to steady state.
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11.2  Systems of differential equations

What about when there is a system of differential equations? In
particular, a linear system of differential equations like

dei1\  [a b\ [(x; b
)-GO e

where the change in both x; and x; depends on the level of x; and xp,
where the coefficients in the matrix tell us how much they depend on
them. Writing this in vector form we would have

dx=Ax+b (11.23)

where A is the matrix of coefficients. Again, the steady state is going
to be
x*=—A"1p (11.24)

and notice the similarity to before (inverse of a times b). Again, we
can write things in terms of deviations from steady state

dz = Az (11.25)

where dz is the vector (dx1,dx;)" and z is the vector (x7 — xj, X2 — X3.
Just like the simple one-dimensional version of this, there is a
standard answer, and it looks similar. The answer is that

ze = eflz (11.26)
or
X At *
xp=x"+e(xg—x") (11.27)

where everything is interpreted as vectors/matrices. Now, our prob-
lem is stable if we have something like A < 0, which isn’t quite right
because A is a matrix. So we need to understand how to figure out if
A is negative-ish with respect to the elements of x such that as t gets
bigger this ¢/ term goes to zero.

The problem, of course, is that evaluating e is not easy, and
moreover we don’t just want a theoretical condition that ensures it
converges to steady state, but in an ideal world a way to solve for the
exact value of x; at every given point of time, meaning we want the
exact form of e/,

We can get somewhere by noting that we can break down a square
matrix A into the following

A=VDV! (11.28)

where V' is a matrix of eigenvectors (columns) and D is a diagonal
matrix containing the eigenvalues of A. All standard linear algebra



LINEARIZING AND SOLVING THE RAMSEY

stuff. The more important quality of this relationship for us is that
another linear algebra result is that

e = vePty 1 (11.29)

or that the exponential of A depends on the exponential of the di-
agonal part of it. Use this and go back to our simple relationship of

z; = ez, and we have

Vlz, = Pty 1z,. (11.30)

Notice that what we’ve done is “scale” z; and zy by the same matrix
V, just like in the simple one-dimensional case. And just like we did
in that case, we can see that if this scaled form converges to steady
state then so does z;.

So we're going to change notation once again and write the follow-
ing

wy = ePtwy (11.31)

where w; = V1z;is just the scaled version of z;. Now we have
a system that we can evaluate with relative ease, in the sense that
eP! has a easy form to work with, as it is diagonal. For a simple
2-variable system this says that

it

w, = elwy (11.32)
d

t
wyr = 2wy (11.33)

and now it’s just two separate dynamic relationships that we can
understand in a straightforward way.

If both dq and d; are negative, then both w; and w, go to steady
state, and if that’s true then it must be that (both elements of) z; goes
to steady state. If both d; and d; are positive, then things spin out of
control, and therefore so does z;.

If only d; < 0 (WLOG) and dy > 0, then it’s possible for this system
to converge to steady state, and in that sense we say it is “saddle-
path stable”, meaning there is one route towards the steady state. The
only way this works is if the explosive compoenent starts at steady
state, meaning wp o = 0. Because d; < 0, the value of w; y can be
anything and things will converge.

This saddle path case is the most relevant for the Ramsey problem,
as we’ll see. It's worth establishing some results on what that looks
like though using this generic form of the problem. We know that

w0 _ 1 Up U2 (Z10) _ 1 V22210 — V1222,0
w20 011022 — 012021 \ =021 711 22,0 011022 — 012021 \ —U2121,0 + V11220

(11.34)
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where all the v terms are elements of the inverse of V. If we assert
that wy ¢ = 0, then it has to be that

—021210 + V11220 = 0 (11.35)

or that
021
220 = 210 (11.36)
11

or that there is a strict proportional relationship between the initial
state of both variables. Remember, these z variables are deviations
from steady state, and this is telling us that in the saddle path case
the system converges to steady state only if the distance to steady
state of z, is proportional to z;.

Can we count on that happening? It depends on what kind of
system we’re trying to describe. In this economic case, we have
that one of the initial variables (capital) will be given, so that’s not
possible to change. But the other initial value (consumption) will be a
choice, and we can set it to the right amount to ensure this holds.

Moreover, assuming we set things this way, we get that

wio\ 1 v —v12)\ (z10) _ (Z10/711
wyo) V11V — V12021 \—U2; 011 20) 0
(11.37)
Meaning we know how to characterize the entire initial state of w
that ensures we converge to steady state. That means our system

wy = ePtwy is now

wi = eNlzig/on (11.38)

’

wy; = 0. (11.39)

Okay, but we want this in terms of z;, not w;. Reversing course, we
know that w; = V~lz; so Vw; = 24

¢ dyt
i) _ (o v (eftzig/on | [ ez (11.40)
- - dqt 0 °
2ot vy U 0 e 210

and we know the entire time path of z; for both variables. Both
converge to steady state here given that d; < 0, and remember that
this only works because we picked the initial value z; g to be precisely
the right value to ensure that our second dimension was always in
steady state.

11.3 Eigenvalues and Eigenvectors

We’ve gotten pretty far, but note that we need the eigenvalues and
eigenvectors for the matrix A to make this work. For a given matrix



LINEARIZING AND SOLVING THE RAMSEY

A the eigenvalues are found by solving the characteristic equation of
A which is

det(A—AI) =0 (11.41)

for all values of A that work. For a generic matrix with entries 4, in
the first row and c, d in the second, this is

(a—A)(d—A)—bc=0 (11.42)
which expands into the polynomial
A2 —(a+d)A+ (ad —bc) =0 (11.43)

and now you have to take the roots of this thing. That’s do-able, and
the answers are

AM o= (a+d)/2- ((a+d)2/4— (ad—bc))l/2 (11.44)
1/2
A = (a+d)/2+ ((a+d)2/4— (ad—bc)) . (11.45)

Great. Note that the difference in these two is simply the sign in the
middle, and so whether either of these will be negative or positive
depends on the relative size of the terms. But in principle A; is the
one we are thinking of as being negative.

We also need the eigenvectors for each one of these values so we
can collect them into V. Without going through all the steps here, for
a simple 2x2 we can establish that the V matrix will be either

b b
V= .
(/\1 —a Ay — a) (11.46)

v </\1 —d Ay — d) (11.47)

c c

if b #0or

if ¢ # 0, and we’d choose the form (or either arbitrarily) depending
on the values of b and ¢ in the original A matrix.

Note that with our prior section we established something about
the eigenvalues and eigenvectors that depends on A, so that we could

At
zZ1i\ _ eMizyg _ e"'z10 (11.48)
- AM—a - At .
2ot Mtz e %10

as our solutions. It matters that we’ve arranged things so that the

then say

first eigenvalue is the negative one, given what we established in the
prior section.
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11.4 Linearizing the Ramsey

So the game is to put the Ramsey into a form that matches something
like the dz = Az form of the prior section and then if we can do that
we know that it’s the eigenvalues of the A matrix that are going to do
a lot of work for us.

To get there we're going to cast the whole problem in a specific
way that allows us to track things as a system of two variables, K/ AL
and C/AL. The reason for K/ AL is that this is what we’ve looked
at throughout, as this is just K/Y = (K/AL)'~¢k, and the reason for
C/ AL is that this is a symmetric idea and once we have C/ AL we
can infer the values of things like C/Y to get the savings rate.

For some sanity, define

k = K/AL= (K/Y)"/0-) (11.49)
¢ = C/AL=(1-sp)y (11.50)
§J = Y/AL=k% = (K/Y)*/(0~¢) (11.51)

where A is the level of productivity and L is the size of the popula-
tion. These are convenient forms to solve with as c or y are not steady
in steady state, but grow at a constant rate. We need something that
remains static in steady state. The last relationship just establishes
what we already knew about how GDP and capital were related
through ek, but puts that in the form of Y/ AL, again to simplify
things. The extra relationships show you how these things are related
to stuff we already talked about like the K/Y ratio and s;. We're just
making some convenient scalings of variables to make this easier.
This implies that

g = k¥xl—¢/k—(6+ga+g1)
1 A
g = (eKkeK_1 —5—9—agA)

where g; comes from the fact that we are looking at g; = g — g4, and
g} is just the dynamic budget constraint for g3 = g — g4. Note that
I've plugged in for i here already

The differential systems are in the form of changes, dx, not growth
rates, so this system is

dk = k% —¢—(6+gatg)k (11.52)
A 1/ e A
¢ = = (eKkeK 1 —(5—9—¢7g,4) ¢ (11.53)
This isn’t quite what we need yet. The vector dx = (dk,d¢)’ is our
vector of changes in variables, and so we should have this in a linear

system with x = (lAc, ¢)’, but as you can see this isn’t quite how things
work because there are non-linear relationships between dx and x.
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We can get this into a linear form we can analyze by doing a Taylor
series expansion around the steady state.

For a system of equations, a Taylor expansion of a non-linear
system works just like a regular one-variable Taylor expansion. In our
case, if we have dx = g(x) as our non-linear system, then

dx ~ g(x") + g/ (x) (x - ) (11.54)

where g(x*) = 0 because that is the definition of a steady state, and
¢’ (x*) is the Jacobian (the set of derivatives of each element of x with
respect to all other elements) of g evaluated at steady state itself.
Even though g(x) is non-linear, with ¢’(x*) evaluated at steady state
with fixed values of x*, it is now just a matrix of fixed coefficients.

In other words, dx ~ ¢'(x*)(x — x*) is a linear system of differential
equations. In fact, because dx = d(x — x*) because steady states are,
well, steady, it’s the case that our Taylor expansion is already in this
form

dz ~ ¢'(x*)z (11.55)

and here the A matrix of coefficients is just A = g’ (x*).
All that means we need to find this Jacobian thing for our existing
Ramsey model. What we are after is this general Jacobian,

ade/ok  ode/ac (11.56)

, odk/ok odk/o¢
(x) =
and then we want to fix this Jacobian as a set of fixed coefficients by
evaluating each of those partials at the steady state.

For our system of equations we get

/(x) = exk* ™1 — (6+ga+381) -1
g = Lex(ex — 1)kex—2 1 (eKIAcek_l —-6—0— agA>
(11.57)
but evaluated at the steady state we know that
(o ex (k) — (6 +ga+gr) 1
= o - .58
g ( Sexlex —1)(k*)x2 0 (11:58)

and simplifying further we have

oy [ (=R
* (x)‘<—€K:Li1—§f>[<y/k>*1z o) (1159

What this all means is that we have a dynamic system that looks

like this
~ (ex —s7)(y/k)* -1
" < A-spl/O P 0 ) : (11.60

g
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where z = (k,¢)’. Putting this in more familiar terms from the
prior section, we have a system that is of the form dz = Az, and we
know what A looks like now. One thing to note here is that if two
economies have the same steady state k/y and s; (possible), then the
only thing that differentiates them is the value of ¢, and higher o is
going to mean a smaller element in that lower left, which will result
ultimately in a slower convergence speed and lower A;.

Thus for the Ramsey model we need to know the eigenvalues
and the eigenvectors. Plugging into what we’ve got from the prior
section.

1/2

Moo= (ex= s/ 2= (((ex = s w/b) /4 + L1 =) (/0 1)

* * * " EKE N w12\ 172
Moo= ek =sD/R) /24 (((ex = s /WP /4+ LA = splw/ )
and have fun with that. We also need some eigenvector information,
and that’s

1/2

* * * * €KEL * *
on = (ek—sDu/k) /2= (((ex =sD)(y/k) )P /4+ L =] [(y/K) )
€KEL % %

v = —— =1 =sp)[(y/k) I?
so again, have fun with that.

Just going back to the generic solution to the differential. Remem-
ber that we had to set one of the wy terms to zero to ensure the
system didn’t explode. That’s equivalent here to setting c to the
right thing to ensure we are on a stable arm towards the steady state.
We have to pick just the right consumption value so that things work.
That value in our case is
60—6* _ _eK;L(l_S?)[(y/k)*]z (120_12*>

o * * * * * * 1 2
(ex =) (W/K)* /2= (((ex = s}) (y/K)*)2/4+ (1= 5)[(y/ k) 2)




A
Supplemental material

A.1  Logs and growth rates

Throughout the notes we’ll be talking about growth, and so the
mathematics and notation of dealing with things that grow is crucial.
Let’s start with a simple function that the value of some variable z
depends on time, z(t). Take the total derivative of this function

dz(t) = Z/(t)dt (A.1)

or the absolute change in z(t) depends on the derivative z’(t) and the
actual change in time. If you divide both sides of this by z(t), you get

dz(t)/dt  2'(t)
2(t)  z(t)

On the left is the growth rate of z; the change in z for a given change

(A.2)

in time divided by z itself. We’ll be concerned a lot with growth rates,
so I'm going to introduce some new notation here to avoid writing
out this whole fraction over and over again.
dz(t)/dt
= A.

g z > ( t) ( 3)
Any time you see g, anywhere, it means the growth rate of z (or
whatever variable is in the subscript). As we’ll often implicitly as-
sume that the change in time is dt = 1, I will also often refer to
dz(t)/z(t) as g,. We'll sometimes use the following notation as well
to save on notation in certain situations,

G:=1+gz, (A.g)

and G; is sometimes referred to as the “growth factor” of z.

That definition works fine, but we can establish a nice relationship
between the (natural) log of z(t) and the growth rate that will save us
a lot of time in the work ahead. Start with Inz(t), and again take the
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total derivative,

/
dlnz(t) = Zz(t)dt. (A.5)
This expression means that

dinz(t) Z/(t)
dt  z(t) - &= (A-6)

The derivative of log z(t) for a given change in time is equal to the
growth rate of z. This is incredibly useful for us. It effectively says
that the derivative of the log of something with respect to time is
equal to its growth rate. As we'll often look at figures which plot
the log of a variable against t, this gives us a simple visual way to
evaluate the growth rate. The slope of Inz(t) with respect to time is
equal to the growth rate.

Things get even more stark if we have exponential growth, mean-
ing there is a constant growth rate. Let

z(t) = z(0)e (A7)

where z(0) is some initial value of z, and the value of z at any time
tis z(t). b is a parameter and is equal to the growth rate, as we will
see. Take logs and you get

Inz(t) = Inz(0) + bt (A.8)

and now this is log-linear. If we take the derivative of this with
respect to time we get dInz(t)/dt = b, or the growth rate is g, = b.
Moreover, note that this last equation is simply the equation for
a straight line. Which can use this visually as well. If we see that
the relationship of (log) z(t) with time is linear, we know it has a
constant growth rate. The intercept of this line tells us about the size
of z(0).

Finally, you should be familiar with the properties of growth rates
of products, ratios, and powers, which all can be confirmed by taking
logs and then differentiating with respect to time.

X=ZW = gx=8z+8gw (A.9)

Z
X=9 = 8x=82—8w

X=27Z" = gx=agz

A.2 Taylor series expansions

At times it’s useful to use Taylor series expansions to approximation
functions. Formally, given some function f(x) evaluated around the

You can confirm this by finding 2/ () =
bz(0)e, and dividing by z(t), so that
Z/(t)/z(t) = bz(0)e? /z(0)e? = b.
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point a is

! 1 s n

f(x) = f(a) +f (a) (x—a)+f27(!a)(x—a)2+.... =) f(n)!(a) (x—a)".

" (A.10)
We would normally work with a first-order (just the f/(a) term)
Taylor approximation, eliminating the other higher-order terms. The
reason we do this is because as the weight in the denominator (the
factorial) is growing rapidly and decreasing the relevance of these
higher-order terms.

An example is approximating the log function using the Taylor

series, which is where we get our rule of thumb that differences
in logs are approximately equal to growth rates. Let f(x) = In(x).
Evaluate this at the point a and a first-order approximation is

In(x) =~ In(a) + %(x —a). (A.11)

Let x = (1 + g)a, where g is a small growth rate like ¢ = 0.02. Then
the Taylor series says

g

In(x) ~ In(a) + - ((1+ g)a —a) = Ina) + &

=In(a)+g (A12)
This means that

In(x) —In(a) =In((1+g)a) —In(a) =In(1 + g) = g. (A.13)

A.3  From nominal to real GDP

In theory we want to evaluate the change in real GDP, meaning the
aggregation of changes in real quantities consumed, each weighted
by their expenditure share, as shown in equation (??). How does the
data on real GDP produced by a national statistical agency match up
to this?

To explain, let’s start with a simple two-good situation, and build
the intuition for the issues that come up with measuring real GDP.
In our little two-good world, the real amount of ¢; and ¢, produced
and consumed is a result of an interaction of our preferences for the
two goods and the production possibilities frontier that tells us the
physical trade-off in producing good 1 in terms of good 2. But we
cannot observe the utility function or the PPF, we only observe the
actual market outcomes. That is, we see the nominal price that each
sells for p; and py, and we know the quantity produced, c¢; and c;
(or we see expenditure on good 1 and good 2, and divide by price to
recover the quantity).

Moreover, we observe these market outcomes both in the present,
and in the past. And we’d like to compare the bundle of goods
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produced in those two periods and figure out whether we are better
or worse off - whether economic growth occurred. If ¢ present > €2,past
and ¢1 present > C1,past, then it is straightforward to conclude that the
present is better off than the past (assuming typical utility over the
two goods).

Figure A.1 gives a simple example of this. That figure includes a
line that has slope —p;/p2, which gives the relative price of the two
goods. As drawn, that relative price is different in past and present,
but note that this doesn’t change the conclusion that the present is
better off than in the past in this case. A second thing to note is that
pure inflation in prices is not an issue in the Figure. We have the
real quantities graphed, and the slope of the line is unaffected by the
absolute price level, because it captures the relative price of the two
goods. What we cannot do just by looking at the Figure, however, is
put a firm number on the increase in real consumption.

The bigger issue comes when we have a situation as in Figure
A.2, where the present consumes more of good 2, but less of good 1.
Now, it is not obvious whether the economy is better off or not. If we
valued everything at the relative prices of the past, then the present
is obviously better (i.e. it would appear that the constraint shifted
up). But if we valued everything at the relative prices of the present,
then it would look like the past is obviously better (i.e. it would again
appear that the constraint shifted up). Notice that this is not an issue
with pure inflation in prices, as again all that we’re focusing on here
is the relative price of goods within a given period.

How do we compare past and present, then, and figure out
whether the real value of the consumption bundle has increased
or decreased? The answer is that we're going to compare them from
both perspectives (e.g. compare them using the relative prices of the
past, and then compare then using the relative prices of the present)
and do something like average those perspectives. “Holding prices
constant” in the data means averaging the prices of past and present,
and if we do that, we can map the measured change in real GDP to
the theoretical definition.

We want to do this for far more than two goods, however, so
several pieces of notation are necessary before starting. Let P;; be the
nominal price of good j at time ¢, and let cj; be the real quantity of
good j produced/consumed at time t. Let ej; = pj;cj; be the nominal
expenditure on good j at time ¢. Finally, let total nominal expenditure
on the goods from time t, valued at the prices from time s, be denoted
Es¢. Putting this all together, we can establish the following equalities,

Est =) pjscit =) %‘f;‘t-

j€] jel i

80

Consumption of good 2

20 80 100

w0 3
Consumption of good 1
Figure A.1: A change in consumption
where the Present bundle is an obvious
improvement over the Past bundle.

Consumption of good 2
-

Past bundle

20 100

40 60
Consumption of good 1

Figure A.2: A change in consumption
where it is not obvious if the Present or
Past bundle is better.

The value Ey is therefore nominal
expenditure on goods purchased at
time ¢, valued at the prices of time t, or
nominal GDP.



So how do we compare the output of products at time a to the
output of products at time b, where without any loss of generality
we’ll assume that b comes after a? As we did with the two-good case,
we want to value products from both periods in time a prices, and
then value products from both periods in time b prices.

The ratio of real output from period b to real output from period g,
using period a prices, is

<Yb) _ Yjinj PjaCp _ Egp (A1g)
Ya/, Zjin] PjaCja  Eaa
The alternative is to use period b prices, or
<Yb) _ Ljin] Pojj _ Epp (A1)
Yoy Yijinj PojCaj  Eba

These both satisfy our requirement that we compare the quantities
from periods a and b using a common set of relative prices. But
they might differ because the relative prices of goods in a could be
different than in b. As neither one has a greater claim on the truth,
we want to combine the information in both.

A simple average will not work, because these are ratios, but a
geometric average will work.

2),-(R).E) =) oo
Ya F Ya a Ya b Eua Eba

where I used the subscript F for this ratio because it is related to
something called a “Fisher Ideal Price Index”, which is described
below.

Note that the best we can do is create this ratio of real output
between b and a. There is no way to get an absolute number for real
output, as it is meant to measure something like “living standards”,
which have no units. We might decide that a given year (e.g. 2009 or
2013) is our “base” year, and assign it a real index of 100, and use the
ratios we calculate with other years to create index values relative to
that. For example, if (Y2010/Y2009)r = 1.034, and 2009 was our base
year, then we might report real GDP in 2010 as Y919 = 103.4.

This is what we’re after, but the common way to arrive at these ra-
tios involves deflating nominal GDP in given years by prices indices.
What we can show is that this deflation process delivers exactly the
same ratio we just calculated. The price deflator used is again a geo-
metric average of two different underlying price deflators (Laspeyres
and Paasche) that differ in which base period they use.

The Laspeyres price index computes the ratio of prices in b relative
to a, using the quantities from a (the prior period) as weights,

_ Ljes Phjcaj

pL — Zicl bty (A.17)
T Tiey Pajeaj
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We want a geometric average so that
symmetric ratios (e.g. 2 and 1/2) result
in an average ratio of 1, while an
arithmetic average would give us 1.25.
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In contrast, the Paasche price index computes the ratio of prices in b
relative to a, using the quantities from b (the later period).

Ljeg Pojce)

(A.18)
Ljej Pajcyj

S
P ab =
where I used P° to denote this because P” would be confusing.
Again, there is nothing about the Laspeyres or Paasche that makes
one better than the other. So again, we geometrically average them to
get something called a Fisher Ideal Index,

Pt = (PL x P = Zbe b A.
ab ( ab < ab) (Eaa E.p (A.19)
You can probably already see some symmetry of the Fisher price
index with the way we valued real GDP above.

Now go back and rethink calculating the ratio of real GDP across
periods b and a. With some tedious algebra, you can show that

1/2
(%) :<EabEbb)/ _ Eu/B, (A20)
Ya F Eaq Eba Eaq

This says that you can recover the real ratio by first deflating nominal
GDP in period b (Ep,) by the appropriate Fisher price index that
uses period a as a base (P/). This would give you something like the
implicit nominal spending you’d have done for period b products at
period a prices. Second, you divide this deflated nominal GDP by
nominal GDP in period a (Ez), and this gives you the ratio of real
GDP across the two periods.

National accounts typically will give you the pieces of information
to do this deflation method. But note that what we are really trying
to do is compare quantities across periods using a common set of
prices.

A last topic here concerns making comparisons over long peri-
ods of time. We want to look at economic growth over a range of
years, not just two. We could imagine using a single base year, and
comparing all other years to that one. But then we’d have ratios like
(Y1964 / Ya009) r, and we’d be measuring real GDP in 1964 using 2009
prices. The disconnect of those prices may be substantial, and we
haven’t even touched yet on the issues that would come up with new
products arriving, or old products disappearing.

Instead what happens is that we “chain” together estimates of real
GDP ratios for adjacent years. For example, let’s say we calculate
(Y2008/ Y2009)F = 0.98, (Y2007/Y2008)F = 0.97, (Y2006 / Y2007)F = 0.99.
If we set real GDP in 2009 to 100, then we can get real GDP in 2008
by using the first ratio, meaning real GDP in 2008 is 98. Real GDP in
2007 would then be 98 x 0.97 = 95.06, and real GDP in 2006 would be

Note that the Fisher price index for a
given year in terms of its own prices is
just equal to one, or PX, = 1.
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95.06 x 0.99 = 94.11. Our chained series for real GDP would be 94.11
in 2006, 95.06 in 2007, 98 in 2008, and 100 in 2009.

Chained real GDP calculations are the closest thing we’ve got in

the data to the theoretical idea of growth we’re working with. In the

theory, we're talking about dInY, or the change in real GDP holding

prices constant, and chained GDP does something very similar. It

uses (relatively) small changes in time, constructs a price index that is

an average of the prices across the two time periods in question, and

shows us the change in real GDP at that average of the prices.

A.q4 National Income Product Account Basics

The principles of how to add up economic activity seem simple, but

the actual practice of collecting the data and aggregating it are not

trivial. The National Income Product Accounts (NIPA) are the rules

and standards used to track economic activity in a consistent manner

over time. The NIPA track the flows of economic activity, not the stock

of assets or financial values. These flows are the economic transac-
tions that take place in a given time period. As each transaction has
two sides, the NIPA uses T-accounts to match “sources” of funds on
the right (e.g. expenditures) with “uses” of the left (e.g. incomes).

These two sides have to balance.

stocks in the flow of funds.

Account 1. Domestic Income and Product Account

The Integrated Macroeconomic Ac-
counts (IMA) combine the NIPA
accounts with flow of funds data from
the Federal Reserve to reconcile the
flows in the NIPA with changes in
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Line Line
1 |Compensation of @MPIOYEes, PAIT...........couwwrmmmrrmns urrmmmsssmmsssssmsssns sussssens 86185| 15 11,050.6
2| Wagesand SAIAMES ... v s s 6,9389( 16 3,739.1
3 Domestic (3-12) 6,9240( 17| Durable goods..... 1,191.9
4 Rest of the world (5-15)............ 149 18 Nondurable goods ... 25472
5| Supplements to wages and salaries (3-14) 16796( 19| Services . 73115
6 |Taxes on production and imports (4-15).......... 1,132.1( 20 |Gross private domestic tment 25117
7 |Less: Subsidies (4-8) ...........c.ccouu... 58.0( 21| Fixed investment (6-2)........ccccovmervemrenmsensenssnnsenes 24499
8 |Net operating surplus............ 41317 22 Nonresidential..... . 2,007.7
9| Private enterprises (2-19) 41510 23 SHUCIUIBS ......ovvv oonivseensisennssseens sessesssssesssssessss essesssssssssessssses sessssssssss 4480
10| Current surplus of government enterprises (4-28) ... -193( 24 Equipment 937.9
11 |Consumption of fixed capital (6-14) 25342| 25 Intellectual property PrOGUCES.. ... iesmsessmmsssssmssses susssens 621.7
26 RESIARNUAL.......oovvvenniininirisninnis s sessssssssessssssss ssssssssenes 4422
12| GrosS dOMESHIC INCOME ... cccvcvinneins s s 16,358.5| 27| Change in private inventories (6-4) 618
28 |Net exports of goods and SerVICes ... -565.7
13 | Statistical diSCrepancy (6-20)...........ouumummmssssmsssssmssssssss s -2033( 29| Exports (5-1)..... | 21982
30| IMPOMS (5713).0ccrir cerrenmimmismssnniens rsnsessssssssssssssss sesssssssssssssssssssss sessssnes 2,763.8
3,158.6
32| Federal 12925
k) National defense. ... i s 817.8
34 Nondefense ......... 4747
35( State and Iocal ... eemsssssssmsssisnens 1,866.1
14|Gross domestic Product ... s s 16,155.3| 36 |Gross domestic ProduUCt .................c.cccovrivvreeiiiessossnsessssssssesssons s 16,155.3

Figure A.4 shows the first T-account from NIPA, the domestic

Figure A.3: Domestic income and

income and product account (the example is from 2012, and all num-

bers are in billions). The left-hand side shows gross domestic income,

product account. Account 1 from
National Income Product Accounts
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which should be identical to gross domestic product, although the
sources don’t quite agree, so there is a discrepancy of about 200 bil-
lion. Regardless, what this side of the table shows is the equivalent
of the terminology in the notes about wages and operating surplus.
Here, there is more detail, and some additional small terms. Compen-
sation of employees (W) is broken down to wages and salaries and
supplements (e.g. health insurance payments). Taxes on production
and imports include things like tariffs. Net operating surplus is the
combination of returns to capital and economic profits (RK + IT).
Consumption of fixed capital is the depreciation of capital, /K. This
is on the income side, which remember is really the “use” side of the
T-account. Depreciation is one “use” of the payments made by the
source side. The right-hand side is that source side, and it shows the
standard macroeconomic breakdown of GDP into consumption (C),
investment (I), government (G) and net exports (NX).

Account 6. Domestic Cépital Account

Line Line

1 Gross domestic investment 3,126.1 10|Netsaving 3270
2 Private fixed investment (1-21) ........... 2,4499| 11| Personal saving (3-8)..... 946.7
3| Government fixed investment (1-31)... 614.4| 12| Undistributed corporate profits with IVA and CCAdj (2-17) ......oevvvvvnnnnns 691.1
4| Change in private inventories (1-27)... 61.8| 13| Netgovernment saving (4-9) .| -13108
5 Capital account transactions (net)........... -6.5| 14|Plus: Consumption of fixed capital (1-11). 25342
6 Transfer payments for catastrophic 105Ses (7-3) ..o vevuicrieriniieniinnes -7.7| 15| Priate 2,038.0
7 Othercapital account transactions (7-4) . 11| 16| Government 496.2
8 Net lending or net borowing (=), NIPAS (7-5) .....c..cuuevuuniimemnisnsniisesiisnenes -461.7| 17 General government ... 436.1
18 Government enterprises. 60.1
19 [Equals: Gross saving...... 2,861.2
20 |Statistical discrepancy (1-13) -203.3

9 Gross domestic investment, capital account fransactions (net), and
net lending, NIPAs ... . 26579| 21|Gross saving and statistical discrepancy 2,657.9

The NIPA contain other T-accounts. An example is given in Figure
A4, which shows the domestic capital account. The “use” on the left
is the mainly gross domestic investment (I), which you can see here
is attributable in large part to private fixed investment (e.g. homes
and business equipment). There is a meaningful adjustment for net
borrowing of -461 billion, which represents foreign purchases of
investment goods in the United States. The “source” side of the table
is, to me, a bit of misnomer here. I tend to think of the right-hand
side as a description of where the investment spending on the left
side went. Most went to “consumption of fixed capital”, or to cover
depreciation. Net saving is the change in capital stock due to the
gross investment done. Simplifying a little, we’ve got (Net Savings =
Gross Domestic Investment - Consumption of Fixed Capital), which
in the notation established in the notes, would be AK; 1 = Iy — 6K;.

In the notes and the models we develop, we tend to simplify a
lot, excluding things from these tables that are small or immaterial

Figure A.4: Domestic capital account.
Account 6 from National Income
Product Accounts
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to the larger message. Hence the notes do not account for taxes on
production and imports, or the statistical discrepancy, or capital ac-
count transactions. But the intention of the models is to be consistent
with these T-accounts, in that ultimately we want to match the data
obtained from them.

A.5  Input/output accounting and Leontief inverses

The connection of GDP (Y) to gross output (Q) depends on the
input/output relationships of all the different units of production.
Input/output refers to the fact that some of the output of one unit of
production (i) is used as an input by another unit of production (j).
As noted, those intermediate transactions are not part of GDP. But
they do determine how much gross output is nessecary to produce a
given amount of GDP.

A quick example can help illustrate this. Consider an oil drilling
company that produces barrels of oil. The barrels are used by a re-
fining company that uses them to produce gasoline. But it is also the
case that the oil drilling company needs to buy gasoline in order to
run their equipment. In addition, there are consumers who have final
demand for gasoline. Let’s say that 100 barrels of oil can produce
1,000 gallons of gasoline. And let’s say that consumers demand 1,000
gallons of gasoline. But it is also the case that it takes 50 gallons of
gasoline to produce 100 barrels of oil. So how much oil production
is there? To get 1,000 final gallons, we need 100 barrels produced.
But that requires an additional 50 gallons of gas, which requires an
additional 5 barrels of oil. But that 5 barrels of oil requires 2.5 gallons
of gas, which requires and additional o0.25 barrels of oil. And so on
and so on.

We can construct this interaction in a little system of equations.

yp = 01xyg+0
yc = 05xyp+1,000

where yp are barrels produced, which are equal to one-tenth of the
total gallons of gas produced, as that is the demand from the refinery.
The zero in the first line represents the fact that there is zero final
demand for oil (no one uses oil directly, it is only an intermediate
good here). The second line shows that the total gallons of gas pro-
duced are equal to one-half the number of barrels produced (that is
the demand from oil producers) plus the 1,000 gallons demanded

by final consumers. This is just a two-equation, two-unknown situ-
ation. It can be solved to find yp = 105.26 is the gross output of the
oil drilling company, and y; = 1,052.63 is the gross output of the

151

refinery. Note that we only get hard numbers
because I asserted that final demand for
gas was 1,000 gallons.If final demand
was some arbitrary cg, then we could
give a generic solution of yp = 0.1 x
c;/0.95, and yg = (0.5 x 0.1/0.95 +

1) X €G-
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This same logic can be extended to the case of | arbitrary units
of production. Ultimately we’d have a | equation system, with |
unknown gross outputs of p;y;, taking the final demands pjc; of
each unit as given. This is tedious, but it is a straightforward linear
algebra problem, and can be set up in matrix form. To do this, take
the expression for gross output of a unit in equation (??) and “stack”
these, rather than adding them up. The only difference with the little
example of oil and gas is that here we’re going to use values (i.e.
with relative prices included) rather than raw quantities.

piy1 = piyur+piyor + .+ pryp +pic
p2y2 p2y12 + p2y22 + ... + p2yj2 + p2c2

piy; = Py +ppyz+ .+ Py +picy

where recall that p;y;; is the intermediate demand by unit j for output

from unit i. Now we can simplify this by building it into matrix form.

Define the matrices as follows

P1y11 Piyn
c Piy1 Pryj
ok P1e1 P2Y12 P2y)2
C e
q= P2 = |22 A= | P (A21)
P1y; picy vy Py
iy TPy

The vector g captures the gross output of each unit, the vector c the
final demand for each units output. The matrix A is called a “tech-
nical coefficients” matrix. It tells us how much of each intermediate
good is necessary to produce one (real) dollar of additional output
from a given unit of production. It takes py12/p1y1 in purchases of
intermediate good 2 to produce one real dollar of output of good 1,
for example. A thus tells us the “recipe” for producing gross output.
With these matrices, we can simplify our system of equations
down to
q=Aq+g (A.22)

and solve this using normal matrix operations,
(1-A)q=c (A23)
where I is an identity matrix, and so
q=(I-A)"c (A.24)

This is the matrix equivalent of our earlier example with the barrels
and gas. The (I — A)~! matrix is a “Leontief inverse”. It isn’t obvious

Depending on the level of analysis you
are working with - establishment, firm,
sector - you might be able to assert that
yii = 0. But we don’t have to assume
this. It is okay if we think of units

of production purchasing their own
output to use as an intermediate good.
Think of a refinery buying its own gas
to run its own trucks and equipment.

The raw data for these matrices come
from something called a “use table”,
which are part of input/output ac-
counts produced by statistical agencies.
See A.6 for a description of what that
use table looks like.

* Wassily W. Leontief. Input-Output
Economics. Oxford University Press, 1966
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here, but this Leontief inverse summarizes all of the direct and
indirect effects of final demand for c on gross output 4. You could
sum up the elements of q to get gross output Q, or sum up the
elements of ¢ to get GDP, Y.

To see what is going on, go back to the simple example involving
barrels and gasoline. Write the matrix form of this as

YB . 0 0.1 YB CB
3 Y G

where I've allowed both 0il, cp, and gas, c¢, to have some final de-
mand. Our general setting says that we should form the Leontief
inverse first, which in this case is

(1-A)'= (A.26)

1.052 0.105
0526 1.052|°

The entries in this table tell us the total effect of final demand, what-
ever that may be. For example, the upper right entry (0.105) tells us
that every additional gallon of gas demanded induces o0.105 barrels
of oil to be produced. We know that technically, only 0.1 barrels are
necessary, but o.105 are produced because oil production requires
some gasoline itself. The bottom left entry says that every additional
gallon of oil demanded (if anyone wanted oil as a final good) would
lead to 0.526 gallons of gas being produced, 0.5 because it takes that
much gas to produce a barrel, and an additional 0.026 because that
gas requires some oil itself.

Given that Leontief inverse, we know that

[yg _ [1.052 0.105] lﬂ. (A27)
YG

0.526 1.052]| |cg
Note that just knowing the matrix A, and thus the Leontief inverse,

doesn’t tell us how big GDP or gross output will be. It only allows us
to solve for the relationship of gross output and GDP. Determining
actual GDP or gross output would still depend on things like the sup-
ply of factors of production (e.g. labor, capital) and the productivity
of individual units of production. Nevertheless, this structure is still
useful because it gives us the basis for understanding how to account
for the interactions of different units of production, which will be
necessary for several different results.

A.6 Use tables

As part of input/output accounting for an economy, something called
a “use” table is produced. This contains information on the inter-
mediates used by a given unit of production, along with additional
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information on value-added and gross output. A sample of such a ta-

ble is shown in Figure A.6, from a BEA manual on I/O accounting.? 2Karen J. Horowitz and Mark A.
Planting. Concepts and Methods of the U.S.

L. . . Input-Output Accounts. U.S. Department
it is not necessary that a use table is at the industry level. One could, of Commerce Bureau of Economic

This particular use table is shown for major industries of the U.S., but
hypothetically, produce a use table for every single production unit Analysis, 2009

(e.g. establishment or firm) in the economy, it just would get very
large.

Table 1.2 Use table: Commodities used by industries and final uses

—_—
INDUSTRIES FINAL USES (GDP)
. EEH - B £ = |-
e ) 3 g - |2 z
£g | g H S LREEIERE 12 |20: |3 13 |3EEE
% s | F |2 | s |2 o |22 (25|28 /0|2 )El22)15 |2.]2 |2 |534/CS|8
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Agriculture, forestry, fishing, and hunting
Mining
Utilities
Construction
Manufacturing
Wholesale trade
Retail trade
4 | Transportation and warchousing
§ Information
; Finance, insurance, real estate, rental, and leasing
g Professional and business services
o Educational services, health care, and social assistance
Arts, entertai dation, and
food services
Other services, except government
Government
Other
Scrap, used and secondhand goods
Total Intermediate
2 | Compensation of employees
a
2 | Taxes on production and imports, less subsidies
w
- Gross operating surplus Total industry output
2 | Total value added Total commodity output

TOTAL INDUSTRY OUTPUT

Figure A.5: Sample use table. Source:

. Horowitz and Planting (2009).
The rows of the table are labeled “commodities”, although you’ll

notice they are identical to the “industries” listed across the top.
Technically, a cell in the table reports the total amount expended
by the industry (column) on a given commodity (row), but at the
industry level the commodities are typically assumed to be identical
with a given industry. Referring back to the accounting in A.5, if
rows are denoted by i and columns by j, then p;y;; is what in each
cell, or the purchase of commodity i by industry j for use as an
intermediate good.

If you read across a row, you can find total intermediate usage
of commodity i, or };c; piyji- To the right of the total intermediate
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usage are categories of final use, or purchases of commodity 7 by
final users for things like consumption, investment, government

use, or the like. The total of those final uses sum to the 2nd-to-last
column, “Total final use (GDP)”. In the notation from A.5, this total
final use is pjc;. Finally, the final column of the table is labelled “Total
Commodity”, which in our terminology should be equivalent to

pivi = pici + Ljej PiVji-

If you look down a column, you instead see the purchases by a
given industry of the commodities of other industries. The row “Total
intermediate” is thus } ;e pjyij, or the sum spent by industry i on
intermediates from other industries (commodities) j. Below that are
three components of value-added: compensation of employees (W;,
taxes on production and imports (this is usually small relative to
value-added), and gross operating surplus (R;K; + I1;). The three
components by necessity sum to total value-added, or p;c; = W; +
R;K; +11;. Finally, the last row of the table is “Total industry output”,
which again should be gross output, p;y; = W; + (R;K; +I1;) +
Yic] PiYij-

From our perspective, the gross output reported in the column
“Total commodity output” should equal the gross output reported in
the row “Total industry output” for each of the industries. In practice,
these are not equal in the data. First, you can see that there can be
commodities (e.g. scrap and second-hand goods) that are not counted
as an industry. Second, the things produced by a given industry do
not necessarily slot neatly into commodities. For example, think of a
firm that does estate planning. It may be classified under “Finance,
insurance, etc..” as an industry, because the BEA classifies firms by
their primary product. But the commodities it produces could consist
of both financial advice (in the “Finance, insurance, etc..” commodity
group) and legal advice (in the “Professional and business services”
commodity group). Hence the table need not be entirely symmetric.
In practice, we’ll pick one “side” to use, which here will be to look
at industries, and thus pull our information on value-added and

gross output from the final rows of the table. The last important We could also use the “make” table
from the input/output accounts to

.. P . i get the technical coefficients. The
coefficients” matrix A from A.5. The table reports values like p;y;;, value of the use table is that it has the

and we just need to divide these each by gross output of the given value-added and labor compensation
numbers as well.

note is that the use table provides the raw input to the “technical

industry, p;y;, to arrive at the technical coefficients.

A.7 1/O weighted labor cost shares

The statements about elasticities €} and ek laid out in assumption

2.2 come from work by David Baqaee and Emmanuel Fahri.3 They 3 David Baqaee and Emmanuel Farhi. A
Short Note on Aggregating Productivity.
NBER Working Papers 25688, National
Bureau of Economic Research, Inc,
March 2019

establish that under the simple assumptions about production found
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in assumption 2.1 that the values of €} and ek are appropriately mea-
sured by what I'll refer to as an input/output weighted labor share
and capital share, respectively. Given that these add to one, if we can
identify just the labor share, we will know both. I'm simply going to
show the actual calculation of this labor share. Those authors provide
the proof that this is in fact the right way to measure €y.

To find the input/output weighted labor share, we need to con-
struct something similar to the technical coefficients matrix from A.s5.
The difference is that we need those coefficients with respect to costs,
not with respect to gross output.

Let the total costs of any given industry i be given by

costs; = W; + R;K; + Z piVij (A.28)
j€]
which consists of total compensation to labor, W;, total compensation
to capital, R;K;, and then the sum of total payments to all intermedi-
ate good providers.

To incorporate labor and capital into this analysis fully, we're
going to treat them as industries themselves. This isn’t a statement
about their actual operation, but rather an accounting trick so that we
can simplify the analysis. The labor “industry” uses no intermediate
goods, and it doesn’t hire labor or capital itself. It simply provides
labor to other industries.

We’re going to build a matrix of cost shares for each industry,
including our fake industries for labor and capital. This matrix, ),
is going to capture the fraction of total costs accounted for by each
input used by an industry.

M Piyn Piyn 7]
costsy costs 0 0
p2Y12 p2yj2
costs| costsy

0= PIy1j PIY]) 0 0 (A.29)
costsy costsy
Wy Wy

costsy costsy
RiKq Ri1Ky

L costsy costsq _

Each column represents the cost breakdown of a single industry. Take
a look at the second row, first column. This says that the fraction of
industry 1’s total costs that are accounted for by inputs from industry
2 is poy12/costsy. As you go down the rows, these are all the different
intermediate inputs, up to pjy1;/costs;. The final two rows of the
matrix give you the fraction of costs accounted for by wages and
capital costs for an industry. Thus summing up a column delivers
the same summation as in equation (A.28). The final two columns
show the cost breakdown for our two fake industries for labor and
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capital. All the entries in these columns are zero because they don’t
incur any costs. If we had more of these factors of production (e.g.
different types of capital or workers) we’d add columns for each of
these factors, and have more zeros.

If you look back at A.5, you'll see that this matrix is similar to the
technical coefficients matrix A that was used in the Leontief inverse.
The difference is that the coefficients here are divided by total costs,
whereas in that prior matrix they were divided by gross output
(which is equivalent to revenues). To the extent that revenues are
not equal to costs, which would be the case if there were economic
profits, the two matrices entries will differ. What we have here in Q)
tells us how much the industry j will spend on inputs from i if we we
decided to raise the total costs of industry j by one (real) dollar.

There is a similar feedback loop involved with costs as we saw
with gross output in A.5. That is, if there is some final demand for
good 1, say, pjcy, then this requires us to spend money on inputs to
produce good 1, costs. But if producing good 1 requires us to pur-
chase some input from industry 9, say, industry 9 may in turn require
some inputs of good 1. And this could go around and around, with a
logic similar to what we saw in the oil and gas example.

The last thing we need is a vector of final good use by industry,
but in this case scaled by total GDP, which is just Y =} ;c; pjc;. Let’s
define -~ _

pici/Y
p2c2/Y
prej/Y (439
0
0

where the final two rows are the final good use shares for labor and

capital, respectively, and those are equal to zero because those two
factors are not demanded for final use, only as part of producing
other goods.

Bagaee and Farhi (2019) build a matrix algebra statement to ac-
count for the feedback of costs in one industry on the others. This
is similar in form to what was in A.5 in accounting for gross output
and GDP’s relationship.

A=QA+D, (A.31)

where b is the vector of final use shares of GDP, Q) gives us the coef-
ficients governing the feedback of one industry on another’s costs,
and L is a new vector. It captures what I called the input/output
weighted cost shares. In particular, the entry of A associated with the
labor “industry”, call it Ay, will give us the cost share equal to er.

157
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Using basic matrix operations, we have

A=(1I-0Q)'p. (A.32)

The inverse is the cost equivalent of the Leontief inverse. It tells us
how much total costs for an industry i go up given an increase in the
final output of another industry j.

Now, given all this machinery, can we calculate the value of A
and use it to see what happens to €, over time? The answer is yes.
To do this, we need information on the coefficients in (2. We can get
the raw costs for industry 7 from purchasing an input from industry
J, pjyij from a “use” table, see A.6. However, we have a problem with
computing the total costs. This problem arises because what the use
table reports as “gross operating surplus” is a combination of both
capital costs (R;K;) and economic profits (I11;). To proceed I'll make
some assumptions about what percentage of gross operating surplus
is accounted for by R;K;, and compute A from that.
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All the data we need is from the use tables at the BEA. For each
year, I compute A three times: (1) assuming R;K; is 50% of gross oper-
ating surplus, (2) assuming assuming R;K; is 75% of gross operating
surplus, and (3) assuming R;K; is 100% of gross operating surplus
(meaning zero economic profits).

2018

We could try to leverage a different
data source on industry-level costs, but
this raises issues in mapping industries
used in the use table to industries used
in the other data sources. They are not
always compatible.

—— KLEMS raw share
1/0 wtd. share (100% RK)
----- 1/0 wtd. share (75% RK)
1/0 wtd. share (50% RK)

Figure A.6: Input/output weighted

sbor <54 shangs-oven tipg, Praeey
EH&%%%E%C&I?ROW “cfm and access
the Historical Benchmark Input-
Output Data. I'm using the Use-
SUT-Framework-1997-2017-SUM.xIsx
sheet from that source. I use only the
1997-2017 data because it reports labor
compensation. There are 71 industries
in the use table.


https://apps.bea.gov/iTable/index_industry_io.cfm
https://apps.bea.gov/iTable/index_industry_io.cfm
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Figure A.7 plots the results of these calculations. The three dashed
lines show the values of A} retrieved from A under the different
assumptions about R;K;. As can be seen, when R;K; is assumed
to be 100% of gross operating surplus, and capital payments are
largest, we get the lowest values for A;. As we assume that capital
payments make up smaller and smaller shares of costs, the implied
labor cost share rises. Nevertheless, note that under any of the three
assumptions, the values of A} are roughly stable over time. For
comparison, the dark line plots the naive calculation of the labor
share of costs taken from a different source (KLEMS) that was shown
in Figure 1.5. All series show the same lack of any distinct trend,
although they are not of course perfectly constant.

One concern is that the value of A} shifted substantially over time
because the R;K; share of gross operating surplus changed over time.
There is evidence that payments to capital as a share of GDP fell over

time, while the share of GDP going to economic profits rose.# At the 4+Simcha Barkai. Declining labor and
capital shares. The Journal of Finance, 75

most extreme, the R;K; share of gross operating surplus fell from
(5):2421-2463, 2020

around 75% in 1995 to around 50% in 2015. This would imply that
the true value of A; rose somewhat over time, from about 0.62 to
about 0.67. Whether than constitutes a significant trend in the cost
share of labor is unclear. Each of the three series has a range of about
0.05 even if we assume capital payments did not change as a share of
gross operating surplus.

Assumption 2.3 should thus be read as a very rough approxima-
tion. The theoretical results that are derived rely on the constancy of
Ap, and hence of €. Thus they should be seen as approximations as
well, and not rigid laws of nature.

A.8 Final expenditure versus value-added

When we think about separate sectors or industries in the economy,
we have to be careful to be consistent in how preferences and pro-

duction are described.> Consider the following table. In this simple 5 Berthold Herrendorf, Richard Roger-
son, and Akos Valentinyi. Two per-

. . . . spectives on preferences and structural
shown in how that spending was broken down in two different transformation. American Econonic

setup, there was $9oo in spending done in say, a month. What it

dimensions. Review, 2013

Value-Added:

Expenditure: Farm Factory Shop Exp Total

Food 40 20 100 160
Phone 0 150 150 300
Vacation 30 10 400 440

VA Total 70 180 650 900
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The rows represent expenditure categories, which may conform
closely to how consumers would characterize their purchases. For
this month, they purchased some food, a phone, and a vacation.
From the perspective of the consumer, they spent $160 on food,
$300 on a phone, and $440 on the vacation. On the other hand, the
columns represent value-added categories, which you might consider
more as the “firm” view of spending. There is a farm, a factory, and a
shop(s). From the farms perspective, it sold $180 of goods, the factory
sold $180, and the shop sold $650.

Entries in the middle of the table show us how the spending from
either perspective broke down across the other. Take a look from the
expenditure side first. The consumer may have purchased each of
those three items at a shops (or perhaps multiple shops). The shop
knows that of the $160 spent on food, $20 goes to the factory that
packaged the food, and $40 to the farm that grew it in the first place.
From the shops perspective, it added $100 in value to those other
products. From the consumers perspective, though, it probably only
knows that it spent $160 on food. The input/output relationships
that went into providing that food in the shop are likely not relevant
to the consumer.

Similarly, the expenditure categories that the consumer is basing
their utility off of are not relevant to the producers. The fact that the
vacation costs $440 and the phone only $300 is very important to the
consumer, but those costs don’t really matter to the shop who sold
them, who cares only about the $400 they make on the vacation, and
the $150 on the phone.

When we try to model an economy with multiple industries or
sectors, we have to be concious of this disconnect. That is, if we talk
about industries that produce value-added (e.g. agriculture, manufac-
turing, and services) then we also have to talk about preferences over
those same value-added industries. That is, we’d have to describe a
utility function where people care about how much farm production
they want, how much factory production they want, and how much
shop production they want. On the other hand, if we wanted to have
preferences defined over food, phones, and vacations, then we’d
have to specify production functions which tell us how much food is
produced, how many phones are produced, and how many vacations
are produced.

It could be difficult to be consistent. For example, farms know
how much they produced, but do they know how much of it went
to supermarkets to be purchased as “food” versus how much was
purchased to be used as meals on vacation? Probably not.

The problem comes because data sources have different assump-
tions. Most of the production-side data we have classifies firms into
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industries based on their value-added. So the BEA might report the
value-added output of farms, factories, and shops separately. But
at the same time, from the consumption side the BEA will report
spending on food, phones, and vacations for individuals. The two
data sources are telling you about different things. Translating one
into the terms of the other requires an input/output matrix.

A.9 Cost minimization, markups, and cost shares

You can gain a lot of intuition by thinking about a simple, single firm
problem. Let this firm have profits of 7; given by

T = piVi — PmiMi — RiK; — w;L;,

where p; is the price firm i can charge for their output, and we're
not going to make any assumption about how this is set. y; is gross
output. M; is the amount of intermediate good used (there could be
more than one, but this will do the job for us here), and it costs p,
per unit. R; is the rental cost of capital, and K; is capital used. w; is
the wage the firm faces, and L; is the labor they hire. Note that all the
input costs are denoted as being specific to i, which is just meant to
say that we’re not assuming anything about how those wages and
rental costs compare with other firms. But the firm is taking those as
given.
Do a little re-arranging of this, and we have
1= T, PmiMi n RiK; n wiL;
piyi  PiYi piyi  PiYi

(A.33)

which just says that the shares of revenue accounted for by profits
and input costs have to add up to one. To simplify notation, let s,; be
the share accounted for profits, and similar notation for each input
term, so that

1=s;+spy+sk+st (A.34)

where I suppressed the i notation to keep things looking clean.
Further, the firm has some production function that dictates how
output is related to inputs

Yi= F(Mi/Kir LZ)

Look at the cost minimization problem for this firm. That is, given
some target output y7;, how will the firm choose to hire intermediates,
capital, and labor to produce this? That is a constrained optimization
problem, and we can form a Lagrangian to solve it

L= pmiMi + RiKi + w;L; + Ai(?i — F(Mi,Ki, Li))'

161
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The multiplier A; tells us how much the value function - costs -
changes in response to a change in the constraint - output. In other
words, A; tells us the marginal cost of production to firm i.

The first order conditions with respect to the three inputs are:

Pmi = Aifm
w; = AiFL
R; = AFx

It is worth spending a moment thinking about the intuition behind
these conditions. Think of a firm who decides they want to produce
one more unit of output. They could spend w;/ F; on extra labor
to do this, because 1/ Fp is the amount of labor they’d need, and
labor costs w;. Or they could spend R;/Fx on capital, or p,,;/Fy on
intermediates. Obviously, they’d pick the lowest of those three. But
if one of them (capital, say) was lower than another (labor, say), then
they should not just rent more capital, they should actively fire some
workers, and use that additional money to rent more capital, as it
is a cheaper way to produce. As they are trying to cost minimize,
they’ll set the amounts of capital and labor and intermediates such
that those three ratios equal one another, w;/F; = R;/Fx = pmi/ M;.
That ratio is the cost of producing a unit of output, or the marginal
cost, or A; = w;/F (and equivalently for the other inputs). Those are
our first-order conditions.

Go back to equation (A.33) and plug these in for the input prices,
and we have

7T 4 ﬁFMMz' + &FKK,' 4 ﬁFLLi

1= .
pivi  Pi Vi pi Vi pi Vi

(A.35)

To go forward let’s keep introducing notation. First,

Pi
Hi A
is the markup of the firms price over its marginal cost. This markup
will indicate that the firm is earning economic profits. It could come
from market power that the firm has because it is a monopoly, or
in an oligopoly, or engaged in Bertrand competition, etc. It doesn’t
matter for us here why the firm has market power. All we are doing
is establishing some relationships taking the ability of a firm to
charge a markup as given. Second,

Fxxi

Yi

€x =

is the elasticity of production with respect to input x.
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Take the definitions of markups and elasticites back and plug them
into equation (A.35) and you get

which can be re-arranged to

EM T EK T €L = ‘ui(l — ST[).

This gives us a very useful relationship for thinking about how the
properties of production functions (the left-hand side) are related to
economic profits (the right-hand side).

The left side is the sum of elasticities, which tells us about the
returns to scale of production. If these sum to one, then production is
constant returns, while if they sum to more than one it is increasing

returns, and if they sum to less than one it has decreasing returns. You can confirm the relationship of

the elasticities and returns to scale

This sum pins down the right-hand side, which says that the markup
of prices over marginal costs is positively associated with the share of if you scale up all inputs by some
revenues that go to economic profits (which isn’t a surprise). percentage X%.

Consider a few possible situations:

(a) Production is constant returns (epr + €x + €, = 1). If sy > 0, then
it must be because the firm has a markup p; > 1. In other words,
with constant returns the only way a firm can earn profits is by
charging a price over marginal cost. That seems trivial, but is not
obvious given other production situations.

(b) Production is increasing returns (eps + €x + €; > 1). In this case,
the firm could have a markup y; > 1 but still have s; = 0. With
increasing returns, the firm has to charge more than marginal
cost in order to pay their inputs, and yet has nothing left over for
profits.

The relationship of scale to markups and the profit share involves no
assumption about how firms set the markup, or what kind of market
they are in. It is a property that arises solely from cost minimization,
and so it holds no matter what you assume about how firms set
prices.

Let’s go back to the firm problem cost minimization problem.
Define their total costs as

costs; = ppiM; + RiK; 4+ w;L;.
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Now, call the fraction of costs accounted for by labor ¢y, so that

o wily
¢ = costs;
AFLL;
AiFpM; + A FgK; + AjFr L
FLLi/yi
FmM;/yi + FxKi/yi + FLL;i /yi
€L
em+ex+er

The share of costs accounted for by labor is equal to its elasticity
relative to the total elasticities (which recall capture the returns to
scale). If there are constant returns to scale, then it follows that ¢; =
€1, or the cost share of labor is equal to the elasticity of production
with respect to labor. All the findings here for labor apply to the
other inputs as well.

We can utilize observable data on costs to infer unobservable
properties of the production function. Note that we cannot use
the cost data by itself to know if there are constant returns to scale
or not. But if we are willing to assume constant returns and cost
minimization, then we can use ¢; data to find €. This holds for a
given firm, but implicitly is the same idea being used to leverage
aggregate data on labor costs to infer the elasticity of aggregate
output with respect to aggregate labor.

One other simple relationship that comes out of the various defini-
tions developed so far is

¢Px = USx. (A.36)

for each input x. This says that the share of costs accounted for by
input x is equal to the markup times the shrae of revenues accounted
for by input x. This should be straightforward to understand. The
share of input x in revenues is going to be lower than the share in
costs, because of the presence of profits. The markup tells us how
important those profits are. Note that if # = 1 and firms charge
prices equal to marginal costs, then ¢ = sy. This highlights an
empirical issue that I trace back to a paper by Hall (1990).> We may
be able to observe the revenue share sy for an input, but not the cost
share ¢, (perhaps because we don’t have full information on costs).
Under only very restrictive conditions (competition that ensures

u = 1) would sy be useful in inferring ¢, and hence €.

The last thing to go over with here is the relationship of gross out-
put and value-added for the firm. This is something that matters for
any model trying to aggregate across different units of production,
but I tend to rely on Basu and Fernald (2002) for an explanation of
their relationship.” Value-added is gross output minus intermediates,

See A.7.

¢ Robert E. Hall. Invariance properties of
solow’s productivity residual. In Peter
Diamond, editor, Growth, Productivity,
Employment. MIT Press, Cambridge,
MA, July 1990

7 Susanto Basu and John Fernald.
Aggregate productivity and aggregate
technology. European Economic Review,
46:963-991, 2002



SUPPLEMENTAL MATERIAL 165

SO
va; = piyi = PmiMi = piyi(1 —sm) (A-37)
and it can be decomposed into.

va; = m; + RiK; + w;L; (A.38)

We can talk about shares of value-added associated with inputs like
labor or capital. These would be

(A-39)

for labor, and a similar expression for capital. We could also work
with costs so that

wili  __¢1
wili +RK;  1—¢m

¢l = (A.40)
The importance of these relationships is that at an aggregate level
we are interested in GDP, which is a sum of value-added. Hence we
might have aggregate data that is analagous to value-added, and
aggregate data on wages and/or capital payments that could give us
measures of ¢/ . But those ¢/ shares cannot necessarily be translated
into €1, because that is equal to ¢;. So at the aggregate level we need
some way to adjust for the use of intermediates, meaning we need
information on ¢). The input/output adjustments made in A.7 are
intuitively doing this for us.

A.10  Multiple capital types

A.11 Types of productivity and the Uzawa Theorem

When building the Solow model we assumed that g4 entered into
equation (2.9) multiplied through by €;. Let me now show you why
that was an acceptable assumption to make, and that despite this the
theory allows for multiple types of productivity growth.

To start, note that our original production setting only allowed for
capital and labor to affect output through their raw numbers (K and
L). But what may matter to firms is the effective labor or capital that
they use. Take labor, for example. The actual number of employees
(L) may be less relevant to a firm than how much brainpower or skill
their employees can bring to bear.

Let’s define different kinds of productivity growth that we could

allow for. There would be as many types of pro-

ductivity growth as we had factors of

production, plus disembodied produc-

» tivity. If we allowed for resources, for

can be CIQSSlﬁed as example, then there would be “resource-
augmenting” productivity growth as
well.

Definition A.1 (Types of productivity growth) Productivity growth
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* “Labor-augmenting” (denoted AL), so that ALL is the total amount of
effective labor used in production, and g 4, is the growth rate of labor-
augmenting productivity.

* “Capital-augmenting” (denoted Ag), so that AgK is the total amount
of effective capital used in production, and g, is the growth rate of
capital-augmenting productivity.

o “Disembodied” (denoted Ay), which works by augmenting the overall pro-
duction of GDP, and g 5, is the growth rate of disembodied productivity.

A1 is meant to capture the effectiveness of an individual worker,
whether that comes about because of education or native skill or
some combination of the two. It encompasses human capital, which
we can analyze more systematically later in the notes. Similarly, for
capital Ak captures how effective each unit of capital is, which might
depend on its vintage (e.g. older capital may be less useful than
newer capital) or other factors. Disembodied productivity affects
output regardless of the level of inputs used. An example could be a
more efficient inventory management system. Using the exact same
workers and exact same capital, a firm might be able to increase their
output because they can fill orders faster.

We can go back and write the growth rate of output given these
definitions as

8y = ex (Sk +8ay) T €1 (8L +84,) +8ay- (A41)

The basic relationship is the same as before. Note that because
capital-augmenting productivity growth (g4, ) affects the effec-
tive amount of capital used, it enters multiplied by ex. Similarly
labor-augmenting productivity growth, g4, , enters multiplied by €] .
Disembodied productivity growth enters with an implicit elasticity of
one.

Define g4 as follows:

__ €k 1
A= ggAK +8a, + agAY (A42)

and it is straightforward to show that equation (A.41) can be written
as

8y = €K&k T €L8L T €L8A, (A.43)

which is identical to what we started with in equation (2.9) from the
main Solow model. Mathematically all we are doing is multiplying
and dividing by €;. Given that the elasticities are constant, given
assumption 2.2, we can write all types of productivity growth in
terms of labor-augmenting productivity growth (e.g. multiplied by
er). All this is really doing is saving us some notation. Defining g4

Traditionally, g4, is referred to as

“Hicks-neutral” productivity growth,

g4, as “Harrod-neutral” productivity
growth, and g4, as “Solow-neutral”
productivity growth.



this was does not say that labor-augmenting productivity growth is
more important than other types.

While in our case all the types of technological change are inter-
changable, that comes about because we’ve used the data to assert
that the elasticities are constant at all times (on or off a balanced

growth path). The Uzawa Theorem?®

is a more generic statement

that if a model has a balanced growth path with a constant g, and
constant elasticities, then it must be possible to write the production
function the way we did in equation (2.9), meaning that all productiv-
ity growth can be expressed as labor-augmenting. Uzawa’s original
statment of this Theorem is not clear, and more recently an accessible
proof of it is available.?

I think there is a common misunderstanding of the Uzawa Theo-
rem that it says productivity growth can only be labor-augmenting,
meaning that it must be that g4, = ¢4, = 0. But the Uzawa Theorem
is about the BGP, and doesn’t say anything about how productivity
growth needs to be expressed when an economy is not on a BGP.
And to the extent that the elasticities like €} are unchanged over time,
any combination of productivity growth is plausible. There are recent
papers exploring whether the Uzawa Theorem needs to hold for
balanced growth to exist.™®

A.12  Harrod-Domar Model

A.13  Traditional Solow diagram

A.14 Evidence on Convergence

A.15 An exact solution for the Solow model

From equation (3.4) we know how to relate gx,y and K/Y. To save
notation in this section, let Z = K/Y, and so g, = gx,/y. Rewrite the
equation as

g =¢€r(s1/z2—6—8L—8a)

and note that g, = (dz/dt)/z, so we can write this as

dz
o — et —en(0+ga+g1)z
which is a simple, linear, differential equation. This can be solve for
the exact time path of z(t) using standard techniques.

First, create the integrating factor p(t) = e€L(0+84+8L)t and multi-

ply both sides of the expression for dz/dt by this

d
EEL(5+3A+8L)t£ + eeL(5+gA+gL)t€L(5 +9a+g1)z= efL@T8atsL)te, g
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Now, note that the entire left-hand side of this expression is simply
an application of the product rule for derivatives, so we can write
9 |:Ze€L(5+gA+gL)t:|

at — eeL(5+gA+gL)t€LSI.

Integrate both sides with respect to dt,

a |:ZE€L(§+gA+gL)t:|
/ a dt — /eeL(5+gA+gL)t€ledt
t

and you get

SI

ZeL(0+gatg)t — 21
6+8a+8L

ecL(0+gateL)t 4 ¢

where C is some constant of integration. Rearrange this to be

z(t)

S1

— Ly cee(Otgatan)t,
6+ga+4L

What is the constant C? We can figure this out if we look at what
happens at t = 0. In that case

S]

z0)= ——+C
©) 0+ga+8L
or
S]
C=z(0)— ————.
©) d+8a+8L

Plug that back into the equation for z(t) and we get
z(t)

ST

ey At s (1 - e—eL(5+gA+gL)f) + z(0)eeL(F8a+8L)t,
A L

And finally, at last, let’s remember that z(t) = K(t)/Y(t), so that we
have

K(#) — SI (1 _ E*GL(5+gA+gL)f) + @efeL(‘”gAJrgL)f'
Y(t) d+gatgr Y(0)

What does this tell us? Note that the capital/output ratio at any
given moment in time is a mixture of two quantities. The weights
1 — e €Ll0+8a+8L)t and e~€L(9+84+8L)f add up to one. As t grows the
first weight goes towards one, and the second weight goes towards
zero. What are these two weights acting on? The first fraction is
s1/ (0 + g4 + gr), which we know is (K/Y)BCP. The second fraction
is K(0) /Y (0), or the initial capital/output ratio. So the value of
K(t)/Y(t) is some weighted average of the balanced growth path
capital/output ratio and the inital capital /output ratio. That means
K(t)/Y(t) is always between these two, which makes sense because
the capital/output ratio is transitioning from one to the other.
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How fast does that transition go? It depends on how sensitive the
weights are to time. Therefore the speed on transition depends on
the parameters €1(d + g4 + g1). Note that the investment share s;
does not show up in the transition speed. It depends on the elasticity
with respect to labor, which also tells us the elasticity with respect to
capital. The more elastic production is with respect to capital (and
thus the less elastic with labor), the slower is the transition. When
output is sensitive to capital, then as capital accumulates, output
goes up a lot, which means more capital is accumulated, and the
K/Y ratio does not change much. When the elasticity with respect to
capital is low, when capital accumulates this doesn’t change Y much,
so the K/Y ratio changes a lot.

The depreciation rate and growth rates of productivity and labor
influence the transition speed as well. The higher these are, the faster
capital is depreciating and the faster output is growing outside of the
effects of capital, so the K/Y ratio adjusts quickly. The logic follows
in reverse without too much trouble.

This isn’t a pleasant equation to look at or work with, given that
the actual path of K/Y through time is non-linear. Nevertheless, it
gives us some notion of what drives transitory growth. Note that
this conforms to the idea that the bigger the gap between the intial
capital/output ratio and the BGP capital/output ratio, the larger the
change in the capital /output ratio.

If we try to embed this is the expression for output per capita from
equation (3.7), things do not get any better. That tell us
Iny(t) = %( In (5—|—gj+gL (1 _ e—EL(5+gA+8L)f) + I;Eg;e—q(ﬂgﬁr&)f) +1In A(0) 4 gat.
Technically, this is the exact path of output per capita over time in
the Solow model. If an economy is on a BGP and K(0)/Y(0) =
(K/Y)BGP, then you can confirm that this delivers the very simple
answer that

BGP _ €K 51
Iny(t) = gln <W> +InA(0) + gat

we found before.

A.16  Continuous-time infinite consumption problem

Assuming that time is continuous is useful at times for analysis.
Again we're assuming the individual has full knowledge of the path
of interest rates and income that they face, and can borrow/lend at
that interest rate at will.

The full dynamic problem is now to mazimize

max /oo e % (c) dt (A.44)
0

c
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subject to the constraint that
a=ra+w-—c (A.45)

where a is now the instantaneous level of assets, w is the instanta-
neous wage rate (or any exogenous income process), ¢ is the instanta-
neous level of consumption, and r is the constant rate of interest. In
the utility function, 6 represents the discount rate, which exponen-
tially lowers the utility of consumption as time passes.

The level of a is the state variable, meaning that it does not jump
around, while c is the control variable, meaning that it can. For all
variables, I've dropped the time subscript for convenience.

We want to eliminate the possibility of unlimited borrowing and
infinite consumption, so we have the present value budget constraint
of

o (e )
ag +/ e twdt = / e edt. (A.46)
0 0

You could set up a Lagrangian, but then we’d need an infinite num-
ber of multipliers. We'll set up a Hamiltonian, which involves a
single multiplier, y, that is called a co-state variable, evolves over time
on its own, and implicitly captures the time path of the infinite mul-
tipliers. It is the “shadow value” of having assets, meaning it gives
you the value of the change in assets at any given moment in time
converted into utility terms.

H = max {e*GtU (c)+p(ra+w— c)} (A.47)

Now, to solve this problem you need to apply several conditions to
the Hamiltonian. This method is called optimal control theory, and
we will use this theory without explicitly discussing the origins of it.
First, maximize H with respect to c, as written

U (c)e® —pu=0 (A.48)

and this gives you something that looks like the FOC from a simpler
consumption problem. It’s telling us that we have to balance out the
marginal gain in utility from consumption against the marginal cost,
which is captured by —u, because a small increase in consumption
means a small drop in assets.

Recover the constraint by taking 0H /du = a or

a=rat+w-—c (A.49)

which is just ensuring that we meet the constraint on how assets
accumulate. The rate of change of the shadow value of assets, ji =
—0H /da or

fL= —pr (A.50)
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and this describes how the shadow value of assets evolves over time.
Finally, we have a transversality condition, which keeps the problem
from “blowing up” and having infinite consumption later in life. This
condition is that

lim pa =0 (A.51)

t—o0
You solve (A.48), (A.49), and (A.50) together in order to find the
solution. First, take (A.48) and find the derivative with respect to
time
e (c)e ® —oU' (c)e " —pn=0

which gives us another expression for ji. Plug (A.50) into the above
equation to get

cd” (c)e " —oU’ (c)e % = —pr
Now notice from (A.48) that u = U’ (c) e~% and plug that in to get
el” (c)e " —oU’ (c)e % = —U' (c)e %

Start going crazy with the algebra and you can get the following

statement ) U’( )
¢ c
c (r=9) c” (c)

which describes the growth of consumption over time. Assume for
!
the moment that the % term is constant. Then whether consump-

tion is growing or falling depends on the relative size of r and 0, or

(A.52)

exactly what we saw in a simpler model. If 7 is larger, then consump-
tion is rising as people save their incomes, and if 6 is larger then
consumption is falling as people discount the future a lot.

The second term on the right hand side of (A.52) should be famil-
iar. It’s just the intertemporal elasticity of substitution. What it says is
that your consumption growth will be slower if your willingness to
substitute between is lower.

In the CRRA case, we know exactly what the intertemporal elastic-
ity is, 1/0. So that means that if preferences are CRRA, the optimal
consumption growth is

¢ 1
=95

Again, solving explicitly for the level of consumption is possible.
Equation (A.52) is a first order differential equation with a simple

form and has the solution that
¢t = coer O

which gives us a nice way to describe consumption in any period.
Now we need the budget constraint, which was

(o] [ee]
ag +/ e twdt = / e edt
0 0
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and we can plug in our formula for ¢;, play with some algebra and
get

ag + /oo e wdt = ¢ /we}?(’(lfg)*e)tdt
0 0

The integral on the right hand side can be evaluated to be a positive,
finite number if
(1-0)r<6

which is just a condition that the return on savings is not so high that
it would make sense to accumulate infinite assets. Now, evaluating
the integral and rearranging we get that

co = % 0—(1—0)r) {ao—i—/oooe_”wdt} .

This form of the consumption function yields essentially identical
conclusions to a discrete time model. At times the continuous time
model proves more convenient to use in further analysis, and at
others the discrete model works. It doesn’t really matter which form
of the problem we use, the logic is the same.

A.17 Constant Relative Risk Aversion

Conclusion 4.1 established that the only way for the growth rate
of consumpton to be stable was if the inter-temporal elasticity of
substitution (IES) was constant. This led to conclusion 4.2 which said
that this implied utility had a specific form, known as “Constant
Relative Risk Aversion”.

To see how this follows, consider the definition of the IES and set
it equal to the constant 1/c,

-U'(e) 1

u’(c)c o’
From the definition of the IES in definition 4.1, we can write this as

—dInc 1

dinl’(c) o

Re-arrange this to
—odInc =dInU’(c)

and then integrate both sides to find
—olnc=InU'(c).

Exponentiate both sides to get
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which says that the marginal utility of consumption is a power
function of consumption itself. In more practical terms, the elasticity
of the marginal utility with respect to c is constant, or it falls by o
percent whenever c rises by 1%, no matter how big ¢ gets.

Finally, integrate both sides of this again and you have
cl-c

1—0

= U(c) (A.53)

which is the definition of the BGP preferences given in conclusion 4.2.
This is the only form of a utility function that delivers a constant IES
no matter how large c gets.

The name given to these preferences, “Constant Relative Risk
Aversion”, comes from the fact that they also imply risk aversion is
constant with respect to c. The definition of the coefficient of risk
aversion is o)

(o) (A.54)
and it measures the curvature of the utility function, or how much
marginal utility changes when ¢ changes. As you can see, it is simply
the reciprocal of the IES (which meaures how much ¢ changes when
marginal utility changes). Hence if the IES is constant and equal to
1/0, then the coefficient of risk aversion must be equal to .

A.18 General time series processes

More general time series processes extend the notion of auto-regressive
or moving-average models, or potentially combine them. The intu-
itions are similar but require more mathematical baggage to establish
similar points.

Definition A.2 (Autoregressive process) An auto-regressive process for
x¢ of order k, referred to as an AR(k) process, is written as

Xt = P+ 01X—1 + P2Xt—2 + oo + PpXpf €t
where ¢;N(0,02) and e; is indepdent over time.

We still want to know if this process is stable, in the sense of
having a finite variance and not “blowing up” over time. Intuitively
we want the combined effects coming through the p; terms to be
“less than one”, except it is not so simple as to just add them up or
anything like that. We will introduce some notation and operators to
do this.

Definition A.3 (Lag operator) The operator L lags the variable x; by one
period
Lxt = x;-1, (A.55)
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and the operator L¥ lags the variable x; by k periods
Lfx = x4 (A.56)

Note that in an AR(k) process we are still just operating on the
same variable, x;, at different lags, so the lag operators allow us to
write a simplified expression.

Definition A.4 (Lag polynomial) A lag polynomial, a(L), is a series of
lag operators
a(L) = ag + a1 L + a2 + ... +apl? (A.57)

where a; are coefficients, and when applied to series x; is
a(L)x; = agxy + a1X;—q1 + Xt + ... + apX;_p. (A.58)

The important aspect of a lag polynomial is the set of coefficients,
the a terms. You can think of every lag polynomial as having infinite
lag terms, L®. What distinguishes lag polynomials is the set of
weights, so a lag polynomial that only is concerned with one lag has
ag # 0, a1 # 0, and then all a; = 0 for all j > 2.

Definition A.5 (Lag polynomial autoregressive process) An auto-
regressive process for x; of order k, referred to as an AR(k) process, can be
written as

a(L)x; = p+ &

where a(L) is the lag polynomial a(L) =1 — pyL — poL? — ... — piLk.

All we've done is come up with a short-hand for writing down
AR processes. But now that we have this shorthand we can establish
some properties.

Conclusion A.1 (Stability of AR process) An auto-regressive process Xy
of the form a(L)x; = p + € is stable if all roots of the lag polynomial a(L)
are greater than one in absolute value.

The conclusion is the generalized version of the idea that in an
AR(1) we need |p| < 1 for stability. But note that this is slightly
different in saying that the roots of the polynomial have to be bigger
than one. Let’s establish what those roots are, and then we’ll be able
to see that this is really saying the same thing.

Definition A.6 (Roots of lag polynomials) Given a lag polynomial a(L)
this can be factored as

a(L) = (1 —a1L)(1 —apL)...(1 — axL) (A.59)

and the roots of this polynomial are 1/aq, 1/ a2, ..., 1/ ay.

You’ll often see this condition stated
as “all roots lie outside the unit circle”
which just confuses the issue.



In general the values of «; are going to be polynomial combina-
tions of the various p; terms from the original lag polynomial itself.
The conclusion in A.1 is saying that each of those 1/«; terms has to
be bigger than one if the process is going to be stable, which means
we're really putting some restriction on the value of the p; terms.
Let’s look at how this lag structure works in the sense of an AR(1) to
confirm it works in the way we think.

An AR(1) can be written as a(L)x; = p + €; where

a(L)=1-p1L. (A.60)

We can factor this, trivially, as a(L) = 1 — a1 L where a7 = p;. Stability
requires that 1/« > 1, or that 1/p; > 1 or that p < 1. While this is a
lot of additional work for an AR(1), it extends easily to higher-order
AR processes.

Some examples of AR(2) processes. Let

Xy =1.5x1 +x2 + ¢, (A.61)

so the lag polynomial is a(L) = 1 — 1.5L — 1L2. You can find the
roots either with the quadratic formula or by factoring this as a(L) =
(1 —2L)(1+ 5L). The roots are 1/2 and -2. Since one of the roots is
less than one in absolute value, this process is not stable. Which kind
of makes intuitive sense here, as that x;_; is emphasizing any shock,
and the x;_, term is not doing anything to “dampen” the shock. This
will have a variance that increases with time.

On the other hand, this process

xt = —3x;-1 +0.1xp_p + & (A.62)

has a lag polynomial of a(L) = 1+ 3L — .1L? and factors to a(L) =
(14 .5L)(1 — .2L), and the roots are -2 and 5. This process is stable
because the roots are both bigger than one in absolute value. Again,
there is intuitive to some extent. The coefficients on the lag terms are
small so that the effect of a shock “dies out” over time.

The lag polynomial structure can provide the way to “iterate” the
AR(k) process into a moving-average, as we did with the AR(1). But
with multiple lags doing this by hand is almost impossible. For a
given AR(k) process, though

a(L)x = ¢ (A.63)

then in principle we could invert the a(L) term and write x; as a
function of ¢; like this
x; = a(L) ey (A.64)

But inverting this whole polynomial thing is not obvious, and we
again need a little help with notation.
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Definition A.7 (Inversion of lag polynomial term) Define the inver-
sion (1 — cij)’l as the term that solves

(1—a;L) '(1—a;L) = 1. (A.65)
We can apply this across all the factored terms of a lag polynomial,

Definition A.8 (Inversion of lag polynomial and AR(k) processes)
For the lag polynomial a(L), it can be factored and inverted as

a(L) =1 -aL) 11 —apl) (1 — L) ! (A.66)
so that an AR(k) can be written as
xp=a(l) e =(1—aL) "1 —apl) L(1— L) ler. (A6Y)

What isn’t obvious from this is that this represents a way of writing
x¢ as an infinite sum of the ¢; terms, or that we’ve iterated out the
entire process and turned it into a moving average of the errors.

Let’s work through how that works. There is a property of this
(unproved) that

Definition A.9 (Inversion of stable lag polynomial term) If |a;[ < 1
(which recall is required for stability) then

oo
(1—aL) ! = Z(:)a;-L’. (A.68)
1=

The inversion of a lag polynomial term can, if that term has a stable
coefficient, be expressed as a sum of lag terms. Note that this is turn-
ing something that is a function of one lag (the inverted polynomial
term) into something with infinite lags, so that it is iterating out a
process. Also note that this is nothing more than a generic version of
the property that Y° a' = 1/(1 —a) if |a| < 1.

For our AR(1) process, a(L)x; = p + ¢, all this is saying we should
be able to write

xp=a(l) 'p+a(l) e (A.69)
which given a(L) = (1 — p;L) means we should have
xt=1=pL) T+ (1=pil) e (A.70)

and if |p1| < 1, this is stable, then we can write
xe=pY pi+ Y piLll;. (A.71)
i=0 i=0

The first term simplifies because L' = u for any lag. The second
term is just saying we should take lags of the error term weighted by
01, so we have

1 X
Xp= ——u-+ Les i A.72
P gpltl (A.72)
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This is just what we established in the main material, which is that
the AR(1) process can be expressed as an infinite moving average of
the error terms.
For an AR(2) this is where all the work pays off. Take the example
of
xp = —3x;-1+01x;_ o + & (A.73)

which has a lag polynomial of a(L) = (1 + .5L)(1 — .2L). If we invert
the two terms

o)

(1+.50)'=Y —5L =1-5L+.250%+.. (A.74)
i=0
and -
(1—20)"' =Y 2Ll =1+ 2L+ .04L% 4 .... (A.75)
i=0
then

a(L) ™' =(1—5L+.25%+...)(1+ 2L +.04L% +..) =1— 3L+ .28L% +...
(A.76)
so that
Xt =€ — .31 + 28e_ + ... (A.77)

as the infinite moving-average representation of x;. Not that you’'d
want to work out the infinite number of terms in the moving average.

We already established the definition of a general moving average
process in Definition 9.5. There is a lag operator way of writing these
as well.

Definition A.10 (Lag polynomial moving average process) A moving
average process for x; of order q, referred to as an MA(q) process, can be
written as

xp =+ b(L)e (A.78)

where b(L) is the lag polynomial b(L) = 1+ byL + bpL? + ... 4 by L1.

By itself this isn’t very exciting. The same properties apply to
b(L) as before. We can factor it into a series of b(L) = (1 — p1L)(1 —

BoL)...(1— B,L).

Definition A.11 (Invertability of moving average) A moving average
process for x; = y + b(L)e; is invertible if the absolute value of all the roots
of b(L) are greater than one, and an invertible moving average process can
be written as

er =b(L) x — (L) Mp. (A-79)

So in one sense invertibility for a moving-average is like stability
for an AR process. The reason invertibility matters here is that we
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could, given an invertible process, recover the value of ¢; (or other
lags of it) given the data on the x; terms. These are normally unob-
served shocks, but what this is saying is that if the lag polynomial is
invertible (in essence, is stable) then we can extract those unobserved
shocks from observed information.

Definition A.12 (ARMA processes) A x; process is ARMA(k,q) if it has
the form

Xt = P+ 01X-1 + 02Xt 2+ o+ kX + &+ b1 1 +b2g 2+ ..+ bgery
(A.80)
which can be expressed as

a(L)x; = pu+b(L)e; (A.81)

where a(L) is the lag polynomial for the AR terms and b(L) is the lag
polynomial for the MA terms.

The properties of an ARMA are inherited from the two parts.

Definition A.13 (Stability of ARMA) An ARMA(k,q) model is stable
if the roots of the a(L) polynomial are all larger than one in absolute value,
and then it can be written as

xy =a(L) Yy +a(L)"1b(L)e; (A.82)
which is an infinite moving average.

Definition A.14 (Invertibility of ARMA) An ARMA(k,q) model is
invertible if the roots of the b(L) polynomial are all larger than one in
absolute value, and then it can be written as

a(L)b(L)'xr = b(L) 'y + & (A.83)

which is an AR(oo) model of the €; process.

A.19 Ramsey to Solow
In the Ramsey model consumption growth is
1
8c = —(exy/k—35-19). (A.84)
while from the production side we have that

Sy = €x(siy/k —0) +eLga — €xgL- (A.85)

If the savings rate s is going to remain constant, it has to be that
gc = &y, 0 the game here is to figure out what has to hold such
that ¢ = gy. This isn’t a case of setting ¢, = gy, in these equations,



because we need this to hold at all y/k. It’s identifying which param-
eter values in the Ramsey model just happen to lead to g = gy.
This gets easier if you write

gc =ex(1/0)y/k—(1/0)6 — (1/0)8 (A.86)
and then if
(1/0)0 = —(1/0)6 + €xé — €194 + €KSL (A.87)
that
gc=€ex(1/0)y/k —exd +erga — €xsL (A.88)

ensures that g, = ¢y at all times.
Therefore if

0=cex(6+9a+8L)—094a—06 (A.89)

the individuals in the Ramsey model will pick a situation where
they keep s; constant at all times no matter the level of k/y, and that
savings rate will be

1

In that sense we could justify the Solow model as being the outcome
of an individual utility-maximizing problem where they had exactly
this specific choice of # and where it was the case that strictly o > 1.

If you take this seriously as a statement about economies, then a
25% sy implies that ¢ ~ 4. What kind of discount rate makes this
plausible? If ex ~ .3, = 0.05, g4 = 0.02, and g1, = 0.01, then you’d
need

6 ~ 4(0.3)(0.05+ 0.02 + 0.01) — 4(0.02) — 0.05 ~ —0.034  (A.91)

or we’d need people to prefer the future, which cannot happen be-
cause then utility is infinite and that’s incompatible with saving only
25% (you’d want to save everything). To make 6 a standard number
we’d need to adjust something else, like say ek. If we make that 0.5
we recover a plausible value of § ~ 0.03. In this case, the steady
state interest rate would be r* ~ 0.03 + 4(0.02) = 0.11 which seems
high, but perhaps you could argue yourself into thinking that was
plausible if we accounted for risk or something like that.

A different option is to presume that g4 is more like 0.01, rather
than 0.02, and you can set ex ~ 0.33. Then you get an implied 6 of
around 0.0024, which is at least positive. The steady state interest rate
is r* ~ 0.0024 + 4(0.01) = 0.0424, and that seems like a reasonable
number.
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A.20 Behavior of savings rates in the Ramsey model

What we want to determnine is how the consumption/output ratio,
c/y (and hence sj) changes over time before it gets to steady state.
We’re dealing here with the (more normal) case that k/y is below
whatever steady state it has, and therefore that g, > 0 and d(k/y) >
0. We know that if we’re below steady state then

€K
k S S— A.
1y < (6+60+0ga) (A-92)
or
exy/k> (6 +0+0g4). (A.93)

The marginal product of capital in this case is higher than the “drag”
from depreciation and impatience/preferences.
The growth rate of c/y = gc — gy

1 1
Sey = ;GKy/k - ;(5+ 0 +0ga) —exsiy/k+ex(0+ga+8r) (Aga)

and given that

* o+ 8L+ 84
=ex—————. A.

1=K ot ogs (A.95)

we can write this as
« 1 1
8ey = {51 - (7] (6+0+08a) — [SI - a} exy/k (A.96)

You can see the sign of this depends on two comparisons of the
savings rate to 1/c, the current savings rate and the steady state.
Because we are below steady state it’s the case that the weight on the
second term is bigger than on the first.

We can work through three different conditions based on the
steady state.

1. s = 1/0. If it so happens that this is true, then the whole first
term is zero, and the sign of g, depends on 1/¢ relative to the
current s;. If s; < 1/0 it is below the steady state value. But then
gey > 0 and so ds; < 0 or s; would get farther from steady state,
and g., would become more positive and it would keep getting
farther. Reverse the logic for the s; > 1/¢ case and you see it isn’t
stable either. The only possible solution here that ends up at a
steady state is if s;; = 1/0 for all t. That is, if s = 1/ then s; is
constant as in the Solow model.

2. 57 < 1/0. In this case the first term is negative. If s; > 1/c¢ (above
steady state), then the second term is negative as well, and g, < 0
or ds; > 0 and s; would get farther away from steady state. It must
be that s;; < 1/0 at all times.
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. 8] > 1/0. In this case the first term is positive. If s; < 1/ (below

steady state), then the second term is positive as well, and gy > 0
or ds; < 0 and s; would get farther away from steady state. It must
be that s;; > 1/0 at all times.

We can say something stronger than this. If s; > s} then to ap-

proach steady state we need g, > 0 so thatds; < 0. And if s; < s7
then we need ey < 0 and ds; > 0. Knowing that:

1.

s} > 1/0. We have that s;; > 1/0 as well. The only answer
consistent with reaching steady state is if s; > sz > 1/0 so that
gey < 0and ds; > 0. If the IES is “small” then you want to smooth
consumption. You set the savings rate low to start and let the
consumption rate fall over time to offset the fact that accumulation
and productivity growth will increase the per-capita consumption
for you later on.

. 8] < 1/0. We have that s;; < 1/c¢ as well. The only answer

consistent with reaching steady state is if 1/ > sp; > s} so that
gy > 0and ds; < 0. If the IES is “big” you are more willing
to save early and let your consumption grow not just due to
accumulation and productivity growth, but also because you
consume a bigger share of it.

. 8] = 1/0. In this case the only consistent answer is for s; = 1/c at

all times.

The behavior of the savings rate depends a lot on the IES, as that

dictates how interested people are in letting consumption grow
quickly. But remember that s7 depends on both ¢ and 6, so which

situation we end up in depends a lot on whether people are patient

or not.
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