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The Elasticity of Aggregate Output 
with Respect to Capital and Labor†

By Dietrich Vollrath*

It is often assumed that the elasticity of GDP with respect to capital is 
one-third, but this assumes zero markups and an aggregate produc-
tion function. I estimate the elasticity allowing markups to vary by 
industry and with a rich input-output structure. Assumptions about 
capital costs provide bounds on elasticity. In the United States from 
1948–1995, the capital elasticity ranged from 0.19–0.32 and shifted 
to 0.24–0.37  by 1996–2018. Excluding housing or decapitalizing 
intellectual property lowers bounds to as low as 0.11–0.26. Based 
on these elasticities, common estimates of total factor productivity 
growth represent a lower bound. (JEL E13, E22, E23, E25, N12)

One of the most common assumptions made within economics is that “alpha 
equals one-third,” referring to the capital elasticity ​α​ in a Cobb-Douglas aggre-

gate production function ​Y  = ​ K​​ α​ ​L​​ 1−α​​. This rule of thumb is derived from an obser-
vation that labor’s share of GDP is around two-thirds, implying ​1 − α  ≈  2/3​ and 
hence that ​α  ≈  1/3​. Not only has a recent literature (reviewed below) documented 
that labor’s share of GDP has fallen in the last few decades, but as Hall (1988, 1990) 
notes, this rule of thumb only works if one assumes that there are zero economic 
profits and labor’s GDP share is equal to its elasticity. The rule of thumb relies on 
the existence of an aggregate production function and commonly assumes that ​α​ is 
constant over time.

In recent work, Baqaee and Farhi (2019, 2020) show that one can calculate a 
meaningful elasticity of GDP with respect to aggregate capital, ​∂ ln Y/∂ ln K​, without 
having to rely on any of the assumptions embedded in the rule of thumb. In particu-
lar, their theory shows how to calculate the aggregate elasticity from disaggregated 
units (e.g., industries) with rich input/output relationships and arbitrary unit-level 
distortions (e.g., markups). There is no need to assume an aggregate production 
function exists, that profits are zero, or that the elasticity remains constant over 
time. Their structure requires only market clearing and cost minimization. The same 
structure provides an elasticity with respect to labor, ​∂ ln Y/∂ ln L​.
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In this paper, I apply the Baqaee and Farhi theory to calculate the annual elastic-
ity of GDP with respect to capital and labor in the United States from 1948–2018 
using disaggregated data on industries and input-output relationships, allowing for 
arbitrary markups at the industry level.

The theory in Baqaee and Farhi (2019, 2020) does not eliminate the well-known 
problem of separating capital costs from economic profits in national accounts 
data. Because of this, what I present here are plausible bounds on the capital and 
labor elasticities based on different assumptions regarding capital costs. An upper 
bound for the capital elasticity is established by assuming zero economic profits 
in all industries, such that all value added not used for labor compensation is paid 
to capital, as in the rule of thumb. A lower bound for the capital elasticity is found 
by assuming capital costs are equal to depreciation, as industries pay at least this 
amount in capital costs.1 Bounds for the labor elasticity are one minus the capital 
elasticity, so the no-profit assumption represents a lower bound and the depreciation 
assumption an upper bound for the labor elasticity. For both factors of production, 
the bounds are not mathematical absolutes but estimates based on extreme assump-
tions regarding capital costs consistent with observed input-output relationships.

My baseline bounds for the capital elasticity in the United States can be seen in 
Figure 1. Between 1948 and 1995, the elasticity of GDP with respect to capital was 
in a range of 0.19–0.32, with one-third forming a rough upper bound. After 1995, the 

1 There are measurement issues with labor costs as well, in particular with the treatment of proprietors’ income 
(Gollin 2002; Gomme and Rupert 2004; Elsby, Hobijn, and Sahin 2013). In practice, the treatment of proprietors’ 
income generates little variation in the estimated elasticities.
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Figure 1. Boundaries for the Aggregate Capital Elasticity, ​​ϵ​Kt​​​, United States 1948–2018

Notes: The estimate of the aggregate capital elasticity, ​​ϵ​K​​​, is made using equation (9) under various assumptions 
explained in detail in the text. The no-profit assumption assumes capital costs equal all value added minus labor 
compensation. The depreciation-only assumption assumes capital costs equal the value of depreciation reported. 
The primary data source for all estimates is the BEA, with input-output tables, capital stocks by industry, compensa-
tion by industry, and value added by industry using different industrial classifications merged according to a meth-
odology described in the online Appendix.
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range shifted up, and from 1996–2018, the elasticity with respect to capital was 
0.24–0.37. The bounds for the labor elasticity are the mirror image of these.

Because of the issues with measuring capital costs, I cannot give a precise esti-
mate of the capital elasticity or labor elasticity. To the extent that there are markups 
present in the economy, the actual capital elasticity will lie below the upper bound 
(and hence the labor elasticity above its lower bound). Given recent evidence that 
markups were above one throughout the period 1948–2018 (Barkai 2020; Edmond, 
Midrigan, and  Xu 2023; De Loecker, Eeckhout, and  Unger 2020; Gutiérrez 
and Philippon 2016; Basu 2019), this implies that the capital elasticity was below 
one-third from 1948–1995. After 1995, it becomes less clear. Higher markups in 
that period imply that the capital elasticity was below the upper bound, but at the 
same time, the upper bound on the capital elasticity rose. A value of one-third for the 
capital elasticity after 1995 is plausible but in no way certain.

In addition to the bounding estimates, I explore two alternative ways of imputing 
the capital costs that go into the elasticity calculations. The first alternative is a user 
cost formula (Hall and Jorgenson 1967) as in Barkai (2020) and Rognlie (2015). 
The elasticity estimates based on user costs of capital fluctuate from 1948–2018 
and show an upward drift but, for the most part, lie within the bounds. There are 
exceptions that imply periods of widespread negative economic profits.2 As a sec-
ond alternative, I use investment spending by industries to estimate their capital 
costs. The capital elasticity based on these costs shows a smaller upward trend—and 
stays everywhere within the bounds. On average, the capital elasticity is around 
0.26 using investment to measure capital costs.

Beyond these baseline results, the bounds on the elasticities depend on the scope 
of economic activity included. In particular, if I narrow my focus to the private 
business sector (excluding government and owner-occupied housing), then the esti-
mated capital elasticity is lower than in the baseline. The capital elasticity in the pri-
vate business sector is 0.13–0.27 from 1948–1995 and 0.17–0.31 from 1996–2018, 
always below one-third.

In a different exercise, I break down the aggregate capital elasticity by three 
types of capital: structures, equipment, and intellectual property (IP). The elasticity 
with respect to structures is in the range 0.09–0.16 throughout the time period stud-
ied, and equipment is in the range 0.08–0.13. IP prior to 1960 has a low elasticity 
of 0.01–0.03, but after 2000, it lies in the range 0.06–0.08. Much of the apparent 
increase in the boundaries of the aggregate capital elasticity can be accounted for by 
this increase in the elasticity with respect to IP.

As another way of assessing the importance of IP, I decapitalize it from the 
national accounts data as in Koh, Santaeulàlia-Llopis, and Zheng (2020) and recom-
pute the aggregate capital elasticity. From 1948–1995 the capital elasticity is in 
the range 0.16–0.29 and 0.19–0.33  from 1996–2018. The combination of results 

2 User cost–based estimates of the capital elasticity in 1975–1989 often lie above the upper bound, implying 
negative economic profits. This is driven by assumptions made regarding expected inflation in the user cost formula. 
I discuss this in Section IIIC when covering the results in more detail.
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suggests that IP accounts for much of the overall increase in the capital elasticity 
bounds over time.3

This paper is a complement to the growing literature on the distribution of GDP 
across factors.4 It shares with that literature the same measurement issues surround-
ing proprietors’ income and capital costs. Recent work on “factorless income” by 
Karabarbounis and Neiman (2019) is perhaps the closest methodological analogue 
to this paper, in that those authors explore a range of plausible approaches for dealing 
with this factorless income at an aggregate level. The bounds I find for the elastici-
ties are calculated either assuming that all factorless income is attributed to capital 
(the zero-profit bound) or that all factorless income represents economic profits (the 
depreciation cost bound).5

To connect my work to this literature more closely, I calculate additional esti-
mates of the elasticities with respect to capital and labor using firm-level data to 
discipline the costs of both inputs. As in De Loecker, Eeckhout, and Unger (2020), 
I use Compustat data on publicly traded firms in the United States from 1955–2016. 
Following their methodology, I get industry-level estimates of costs or, alterna-
tively, direct estimates of industry-level elasticities with respect to capital and labor 
from their estimations based on the firm-level data. Using these to set industry-level 
elasticities, I am able to get new series on the capital (and labor) elasticity con-
sistent with the firm-level data. These series run quite close to the estimates using 
investment costs from the national accounts and fall within the aggregate bounds I 
established. Furthermore, I am able to calculate the markups implied in each of my 
estimates of the elasticities, and like De Loecker, Eeckhout, and Unger (2020), my 
estimates show an increase in markups over time, in particular after 1980. As the 
estimated elasticities for both capital and labor are stable over time, the implication 
of the Compustat-based estimates is that any decline in labor’s share of value added 
is due to the increase in markup and profits and not due to a shift in the importance 
of labor as a factor of production relative to capital.

As a further application of the elasticity estimates, I reexamine common growth 
accounting results, which depend on elasticity estimates to calculate the growth rate 
of total factor productivity (TFP). Typical accounting exercises by the Bureau of 
Labor Statistics (US Bureau of Labor Statistics 1948–2023), as well as extensions to 
incorporate utilization rates (Kimball, Fernald, and Basu 2006; Fernald 2014), use 

3 Theoretically, it would be possible to go in the other direction as well and consider the elasticity estimates 
after capitalizing other intermediate spending from the input-output tables (e.g., technical consulting services, engi-
neering services, etc.) that might plausibly be thought to generate intangible capital (Corrado, Hulten, and Sichel 
2009; McGrattan and Prescott 2010; McGrattan 2020). The industry-level data available on an annual basis does not 
have enough detail to separate this spending out. Nevertheless, it would be correct to say that the capital elasticity I 
estimate in this paper is the elasticity of output with respect to measured capital.

4 Azmat, Manning, and  Reenen (2012); Bentolila and  Saint-Paul (2003); Estrada and  Valdeolivas (2014); 
Harrison (2005); Jaumotte and Tytell (2007); Guscina (2006); Karabarbounis and Neiman (2014); and Dao et al. 
(2017) all document a decline in labor’s share of GDP in the last few decades across countries and industries. This 
was contemporaneous with a decline in capital’s share of GDP (Barkai 2020; Rognlie 2015). Incorporating the les-
sons in Gollin (2002) regarding proprietors’ income does not appear to change that conclusion (Gomme and Rupert 
2004; Elsby, Hobijn, and Sahin 2013). The decline in labor’s share has been tied to a fall in the price of new capital 
(Karabarbounis and Neiman 2014), but more recent research suggests it may be an artifact of capitalizing IP (Koh, 
Santaeulàlia-Llopis, and Zheng 2020) or the reporting of income (Smith et al. 2019).

5 Factorless income as a share of value added is larger in the industry-level data than in the aggregate because I 
do not have information on some rental costs that are reported at the aggregate level.
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the factor share of labor to find the labor elasticity and one minus that share to find 
the capital elasticity, which is equivalent to the no-profits bound on elasticities that 
I calculate. Given my estimates, this overstates the capital elasticity and understates 
the labor elasticity (barring the unlikely case that there are in fact zero economic 
profits in the US economy). I use my estimated series of elasticities to calculate 
TFP under different assumptions regarding capital costs in the United States from 
1948–2018. The standard no-profit estimate forms a lower bound on the growth rate 
of TFP, which averages about 1.29 percent per year from 1948–2018. The growth 
rate of TFP may have been up to 1.60 percent per year, depending on the choice of 
assumption used to find the capital and labor elasticities. The level of TFP in 2018 
may be up to 25 percent higher than what the typical calculation finds. Further, by 
failing to take into account changes in markups, the BLS estimates likely under-
state the increase in productivity growth associated with the IT revolution in the 
1990s/2000s by about 0.3 percentage points per year and understate the subsequent 
productivity growth slowdown by about 0.1 percentage points per year.

More broadly, the elasticities I estimate can be an input into other macroeco-
nomic studies. Research on how the supply of factors of production (e.g., savings/
consumption decisions, labor force participation, demographic change, and inter-
national finance) affects the economy could use these elasticities without neces-
sarily having to specify an entire production structure that incorporates market 
power or rich input-output relationships. As Baqaee and Farhi (2019, 2020) show, 
these elasticities already embed those features, taking industry-level markups and 
TFP as given. As I can only provide reasonable bounds for the elasticities, this pro-
vides a range of values that factor supply models could use to evaluate their results. 
One caution is that the elasticities are first-order approximations and any dramatic 
changes in factor supplies would have to account for second-order effects (Baqaee 
and Farhi 2018). Further, with markups and productivity levels held constant, these 
are partial elasticities with respect to factor supplies and do not encompass effects 
of endogenous reallocation or productivity changes that might occur in response to 
changes in those factor supplies.

The paper proceeds as follows. Section I presents the theoretical framework of 
Baqaee and  Farhi (2019, 2020) I use to calculate the elasticities, and Section  II 
discusses the data sources and major measurement issues. In Section III, I present 
the baseline results on the bounds for the elasticities, as well as the alternatives 
based on investment and user cost assumptions. Section IV evaluates their relation-
ship to aggregate ratios of costs to GDP and explores how the elasticities change 
depending on the scope of economic activity. Section V adds estimates based on 
Compustat firm-level data. Section VI performs the growth accounting exercises, 
and Section VII concludes.

I.  Theoretical Background

What I present in this section is a simplified version of Baqaee and Farhi (2019, 
2020) to highlight only the parts of their theory that I use. Full proofs and deeper 
explanations can be found in their papers. In the interest of space I use the abbrevi-
ation “BF” to refer to those authors in this section.
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The economy consists of ​J​ industries, and each industry uses intermediate inputs 
from other industries (and possibly itself), as well as the factors of production cap-
ital (​K​) and labor (​L​). There can be any arbitrary number of factors of production, 
and I use capital and labor here only for simplicity. BF’s theory is also “nest-able” 
in that each industry could have an arbitrary number of subindustries or firms inside 
of it. I am speaking of industries here solely because this is the level of detail I have 
available in the data.

The gross production function of any industry has constant returns with respect 
to intermediates and the factors of production, but no other structure is imposed. 
Each industry is assumed to be cost minimizing, and each industry charges a price 
for their output that is a markup over the marginal cost. For my purposes I will not 
need to know the price or the markup. It will be sufficient to speak only about the 
costs faced by each industry.

Everything I present in this section holds for a given period ​t​. To avoid needless 
notation, for the remainder of this section I will not use the ​t​ subscript.

To begin, for industry ​i​, let the costs of intermediate good purchased from indus-
try ​j​ be denoted as ​COS​T​ij​​​. The sum of costs accounted for by intermediate goods 
purchased by industry ​i​ from all other ​J​ industries are then

(1)	​ COS​T​iM​​  = ​  ∑ 
j=1

​ 
J

  ​​ COS​T​ij​​​ ,

where the letter ​M​ is used to denote that this represents intermediate good costs only.
The capital costs faced by industry ​i​ will be denoted ​COS​T​iK​​​, and the labor costs 

of the same industry will be denoted ​COS​T​iL​​​. Combined with the intermediate good 
summation above, this means that total costs for industry ​i​ are

(2)	​ COS​T​i​​  =  COS​T​iM​​ + COS​T​iK​​ + COS​T​iL​​​ .

Using these total costs, one can calculate cost shares, which will be the most 
relevant piece of information for calculating the aggregate elasticities in the end. 
For industry ​i​, the share of total costs accounted for by intermediate purchases from 
industry ​j​ is defined as

(3)	​​ λ​ij​​  = ​ 
COS​T​ij​​

 _ 
COS​T​i​​

 ​.​

In a similar manner, for industry ​i​ the share of total costs accounted for by capital 
and labor, respectively, are

(4)	​​ λ​iK​​  = ​ 
COS​T​iK​​

 _ 
COS​T​i​​

 ​​

(5)	​​ λ​iL​​  = ​ 
COS​T​iL​​

 _ 
COS​T​i​​

 ​.​

These cost shares can be used to build a modified input-output matrix that BF 
show can be used to calculate the aggregate elasticities with respect to labor and 
capital. The insight from BF is that one can treat the factors of production as 
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“industries” that serve as an input to other industries—but that purchase no inter-
mediates from other industries. By including them in an expanded IO matrix, they 
show how this can be used to solve for the elasticity of aggregate output with respect 
to those factors.

Let ​Λ​ be a ​J + 2​ by ​J + 2​ matrix, which has ​J​ rows/columns from the individ-
ual industries and two additional rows/columns, one each for the capital and labor 
industries. Each row of ​Λ​ is associated with an industry ​i​, and the entries show the 
cost share of industry ​i​ coming from the industry ​j​ represented in the columns. The 
cost shares of capital and labor for industry ​i​ are included as the final two columns 
of each row.

The last two rows of ​Λ​ capture the cost structure of the capital and labor, and 
they are “dummy” rows in the sense that each entry is a zero. The capital and labor 
industries do not employ any intermediate goods themselves, nor do they hire labor 
or capital.

It is easiest to understand the structure of ​Λ​ by examining it,

(6)	​ Λ  = ​

⎡

 ⎢ 

⎣

​

​λ​11​​

​ 

​λ​12​​

​ 

⋯

​ 

​λ​1J​​

​ 

​λ​1K​​

​ 

​λ​1L​​

​  

​λ​21​​

​ 

​λ​22​​

​ 

⋯

​ 

​λ​2J​​

​ 

​λ​2K​​

​ 

​λ​2L​​

​  ⋮​  ⋮​  ⋱​  ⋮​  ⋮​  ⋮​  
​λ​J1​​

​ 
​λ​J2​​

​ 
⋯

​ 
​λ​JJ​​

​ 
​λ​JK​​

​ 
​λ​JL​​

​  

0

​ 

0

​ 

⋯

​ 

0

​ 

0

​ 

0

​  

0

​ 

0

​ 

⋯

​ 

0

​ 

0

​ 

0

 ​

⎤

 ⎥ 

⎦

​​ .

The top left ​J×J​ block of this matrix are cost shares of intermediates in total 
costs. The final two columns represent the capital and labor cost shares, respectively, 
for each industry. Note that the sum across a row is equal to one for each of the first ​
J​ rows, simply indicating that the matrix accounts for the total costs facing industry ​
i​. The final two rows of the matrix are the dummy rows for capital (second to last) 
and labor (last row), and they sum to zero.

A calculation of aggregate elasticities requires one final piece of information. Let ​​
f​j​​​ be the final use of output from industry ​j​ and ​FINAL  = ​ ∑ j=1​ 

J  ​​ ​f​j​​​ be total final use. 
Then let the final-use share of industry ​j​ be denoted by

(7)	​​ γ​j​​  = ​ 
​f​j​​
 _ 

FINAL
 ​.​

Last, create a ​J + 2​ by one vector ​Γ​, which has ​​γ​j​​​ in row ​j​ for the first ​J​ rows and 
zeroes in the last two rows. Those last two rows represent the final-use shares of the 
capital and labor industries, which are zero as those two factors are used solely as 
inputs by other industries. The structure of ​Γ​ is

(8)	​​ Γ ′ ​  = ​ [​​γ​1​​​  ​γ​2​​​  ⋯​  ​γ​J​​​  0​  0​]​​.

Given this information, one can calculate the vector of what BF call “cost-based 
Domar weights,” ​E​, for each industry.

(9)	​ E  = ​ Γ ′ ​ ​​(I − Λ)​​​ −1​​ ,
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where ​I​ is a ​J + 2​ square identity matrix, and ​​(I − Λ)​​ −1​​ is the Leontief inverse 
matrix of the expanded input-output matrix.

The structure of ​E​ is as follows:

(10)	​ E  = ​ [​​ϵ​1​​​  ​ϵ​2​​​  ⋯​  ​ϵ​J​​​  ​ϵ​K​​​  ​ϵ​L​​​]​​ ,

where ​​ϵ​1​​  …  ​ϵ​J​​​ are the cost-based Domar weights for the regular industries, and ​​
ϵ​K​​​ and ​​ϵ​L​​​ are the cost-based Domar weights for capital and labor. What BF prove is 
that, in this setting, ​​ϵ​K​​​ and ​​ϵ​L​​​ are the elasticity of aggregate output with respect to 
capital and labor, respectively. As this calculation holds for any period ​t​, the elastic-
ities are more properly denoted ​​ϵ​Kt​​​ and ​​ϵ​Lt​​​.

It is worth considering the intuition behind this result. In equation (9) the 
term ​​​(I − Λ)​​​ −1​​ is the Leontief inverse. Let ​​ℓ​ij​​​ denote the typical element of the 
Leontief inverse. ​​ℓ​ij​​​ captures the elasticity of output in industry ​i​ with respect to a 
productivity shock in industry ​j​, accounting for all the input-output linkages joining 
them.6

In the case of capital and labor, these industries have no final use and only serve 
as suppliers of an input to other industries. A productivity shock to these factor 
industries is nothing more than an increase in their supply. Hence, the values of ​​ℓ​iK​​​ 
and ​​ℓ​iL​​​ show us the elasticity of output in industry ​i​ with respect to the supply of 
capital or labor, respectively. This elasticity incorporates not just the direct effect of 
more capital or labor on output in industry ​i​ (which is captured by the cost shares ​​
λ​iK​​​ and ​​λ​iL​​​)—but also incorporates the indirect effect of increased factor inputs on 
the output of suppliers to industry ​i​, on the output of suppliers to the suppliers of 
industry ​i​, and so on.

BF show that that ​​ℓ​iK​​​ and ​​ℓ​iL​​​ measure the elasticity of real output (as opposed to 
revenue) with respect to capital and labor so long as the original entries in ​Λ​ are cost 
shares and not value-added shares. This is the same insight from Hall (1988, 1990), 
Basu and Fernald (2002), and Fernald and Neiman (2011) regarding the use of cost 
shares to measure elasticities but applied in a disaggregated manner to an econ-
omy with input-output linkages between industries. The BF structure is open, in the 
sense that some amount of intermediate good spending may be imported rather than 
produced domestically (and some output of domestic industries may be exported). 
Imports and exports influence the final use shares, ​​γ​j​​​, of industries, and thus influ-
ence the calculation of the elasticities. The elasticities ​​ϵ​Kt​​​ and ​​ϵ​Lt​​​ are the elasticity of 
domestic output with respect to those factors of production.7

III.  National Accounts Data

The calculation of ​​ϵ​Kt​​​ and ​​ϵ​Lt​​​ from equation (9) is straightforward in theory but 
not in practice. The well-known issue is the disconnect between what is reported 

6 Carvalho and Tahbaz-Salehi (2019) provide a very nice introduction to production networks and the interpre-
tation of the Leontief inverse.

7 In the online Appendix, I consider an alternative approach that excludes imported intermediates from the 
calculations. This produces estimates of the elasticities that are very similar to the baseline including imported 
intermediates.
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in the national accounts (e.g., gross operating surplus) and what is necessary for 
the calculation (e.g., the cost of capital). This disconnect is why in the following 
section I will build bounds for estimates of ​​ϵ​Kt​​​ (and ​​ϵ​Lt​​​) based on different ways of 
reconciling the national accounts with the needs of the calculation.

Prior to those main results, I explain the three main US data sources, set notation 
regarding the national accounts, and explain the process I used to merge together 
various sources to create industry-level data that spans 1948–2018 for the United 
States.

The first source of data is input-output tables. These are the Bureau of Economic 
Analysis (BEA) Use and Make Tables, before redefinitions, at producer value (US 
BEA 1997–2022). These annual tables provide information on the costs of interme-
diate commodity ​m​ purchased by industry ​i​ in year ​t​ (Use Table) and the amount of 
commodity ​m​ produced by industry ​i​ in year ​t​ (Make Table). I use a standard proce-
dure to combine the information in the Use and Make Tables to arrive at the cost of 
inputs from industry ​j​ purchased by industry ​i​ in year ​t​, ​COS​T​ijt​​​. Those cost terms 
are used as in equation (3) to find the cost shares ​​λ​ijt​​​ that make up the matrix ​Λ​ in 
equation (6).8 The tables also provide information on the final use of each industry, ​​
f​i​​​ according to the notation developed above—and that goes into the formation of 
the vector ​Γ​ in equation (8). Finally, the tables provide information on the value 
added of each industry ​i​, which I denote here as ​VAL​U​ it​ 

IO​​, where the ​IO​ superscript 
refers to the source of this data.

Industries in the Use Tables are all classified according to the NAICS 2012 sys-
tem, but due to data limitations, the BEA provides the tables at different levels of 
aggregation depending on the year. For 1948–1962, they report 46 industries; for 
1963–1996, 65 industries; and for 1997–2018, 71 industries.

Given the input-output information from the BEA, the second source of data 
is industry-level components of value added from the BEA national income and 
product accounts (US BEA 1929–2022). Specifically, I collect measures of value 
added, ​VAL​U​ jt​ 

NIPA​​, labor compensation, ​COM​P​ jt​ 
NIPA​​, proprietors’ income, ​PRO​P​ jt​ 

NIPA​​, 
and taxes and subsidies, ​TA​X​ jt​ 

NIPA​​, for each industry ​j​ in year ​t​ . The superscript ​NIPA​ 
refers to the source of this data. Last, note that this data is subscripted by ​j​ (not ​i​) to 
indicate that the industrial classification of this NIPA data may be different than the 
industrial classification in the IO table.

To impute labor compensation data (for example) from NIPA to the IO table, I 
use the following equation:

(11)	​ COM​P​ it​ 
IO​  =  VAL​U​ it​ 

IO​ × ​ 
COM​P​ jt​ 

NIPA​
 _ 

VAL​U​ jt​ 
NIPA​

 ​.​

To implement this, I need to match each industry ​i​ in the IO table to an appropri-
ate industry ​j​ in the NIPA data. Given that match, I use the ratio of compensation 
to value added in the NIPA industry to impute the size of compensation in the IO 

8 The online Appendix contains a full description of the procedure used to combine the Use and Make Tables to 
form consistent industry-by-industry measures of intermediate costs. In addition, the online Appendix explains how 
my use of the before-redefinition tables generates very small numerical differences in elasticity estimates compared 
to estimates made using the after-redefinition tables provided by the BEA 1997–2018, while allowing me to extend 
estimates from 1948–2018.
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industry. A similar expression is used for both proprietors’ income and taxes and 
subsidies.

Table  1 documents the classification schemes used by different sources (IO, 
NIPA) for different years. For 1997–2018, the NIPA data (US BEA 1929–2022) 
are classified according to the NAICS 2012 system, and thus it is possible to match 
an industry ​i​ in the IO table to the exact same industry ​j​ in the NIPA data. Further, 
the value added reported in the two sources are identical for these years, and hence 
the expression above devolves to ​COM​P​ it​ 

IO​  =  COM​P​ jt​ 
NIPA​​ (and similar for the other 

components of value added).
For 1948–1996, however, NIPA data are not reported according to the NAICS 

2012 classification. Industry-level data from the Historical Industry Accounts 
Data (US BEA 1977–1999) is classified by either SIC 1972 or SIC 1987 indus-
tries, depending on the year. I continue to use the equation above to find compensa-
tion (and proprietors’ income and taxes) in industry ​i​ of the IO table, but this now 
requires making assumptions about which industry ​j​ in the NIPA data provides an 
appropriate match to industry ​i​ in the IO data in year ​t​.

I rely on crosswalks between SIC 1972, SIC 1987, and NAICS 2012 classifica-
tions and my own judgment to make these matches. A straightforward example from 
1960 would be using “Transportation by air” (SIC 1972 code 45) as industry ​j​ from 
NIPA to match to “Air transportation” (NAICS 2012 code 481) as industry ​i​ in the 
IO table.

The matching for a given year is not always one-for-one, and there are NIPA 
industries ​j​ (e.g., SIC 1972 code 73, “Business services”) whose ratios are used for 
multiple industries ​i​ in the IO table (e.g., NAICS code 561, “Administration and 
support services”; NAICS code 55, “Management of companies;” etc.). There are 
also situations where I have aggregated the data from NIPA industries (e.g., SIC 
1972 codes 63, “Insurance carriers,” and 64, “Insurance agents, brokers, and ser-
vice”) and then matched this aggregate to an industry ​i​ in the IO table (e.g., NAICS 
code 524, “Insurance carriers and related activities”).

Full details of the matching are available in the online Appendix. I have exper-
imented with a variety of different reasonable choices for matching and have not 
found any that change the results of the paper in an appreciable way.9

9 Codes and instructions are available on my website to the reader who wishes to experiment with different 
matching assumptions between the NIPA and IO table sources.

Table 1—Industrial Classification of Data by Year

Series IO tables Value-added components Capital stock

1948–62 NAICS 2012 (47 ind.) SIC 1972 BEA/NAICS 2012
1963–86 NAICS 2012 (65 ind.) SIC 1972 BEA/NAICS 2012
1987–96 NAICS 2012 (65 ind.) SIC 1987 BEA/NAICS 2012
1997–2018 NAICS 2012 (71 ind.) NAICS 2012 BEA/NAICS 2012

Notes: This table shows the classifications used for each range of years. The complete mapping 
of industry data across sources is provided in the online Appendix. All data are from the BEA 
and described in detail in Section II.
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The final data sources I use are the Fixed Asset Accounts Tables of the BEA (US 
BEA 1947–2022, 1901–2022). These provide information on the size of the capital 
stock of type ​k​ in industry ​j​ at years ​t​, ​​K​jkt​​​, the amount of depreciation, ​DEP​R​jkt​​​, 
and investment spending, ​IN​V​jkt​​​. The three types of capital ​k​ reported are structures, 
equipment, and IP. This fixed asset data is reported according to the NAICS 2012 
classification and so can be matched directly to the IO table industries.10

Once combined, the dataset contains yearly information from 1948–2018, at 
the NAICS 2012 classification level, of industry-level information on intermediate 
costs, value added, labor compensation, proprietors’ income, taxes and subsidies, 
depreciation of capital (by type), investment in capital (by type), and the stock of 
capital (by type).

III.  Estimates of the Aggregate Elasticities

As mentioned above, there is a disconnect in the presentation of data in the 
national accounts and the requirements of the calculation of ​​ϵ​Kt​​​ and ​​ϵ​Lt​​​ from equa-
tion (9). In short, this is an issue of how to split gross operating surplus into labor 
costs (part of proprietors’ income), capital costs, and economic profits. As there is 
no correct answer for how to do this, my approach is to construct several estimates 
of ​​ϵ​Kt​​​ and ​​ϵ​Lt​​​ based on different assumptions.

Two of these assumptions will form what I consider to be natural bounds on 
the cost of capital to industries and give a plausible range for values of ​​ϵ​Kt​​​ and ​​
ϵ​Lt​​​. Assuming there are zero economic profits in the economy will maximize the 
implied cost of capital from the national accounts data. The elasticity calculated 
under that assumption will form a plausible top end for the size of ​​ϵ​Kt​​​ (and a lower 
end of the range for ​​ϵ​Lt​​​). On the other hand, we know that industries experienced the 
depreciation of existing capital, and their capital costs are at least this large. Using 
depreciation costs as the lower bound for the cost of capital will therefore give a 
lower end of the range for ​​ϵ​Kt​​​ (and an upper end of the range for ​​ϵ​Lt​​​).

The bounds on capital costs may be reasonable, but they are not inviolable. 
Depreciation is an estimate made by the BEA, and hence may not be an accurate 
measure of those costs. If the financing costs for capital were negative, this would 
also imply total capital costs could be below depreciation. Alternatively, in the pres-
ence of negative economic profits, the implied cost of capital could be even higher 
than supposed with the zero-profit assumption. Nevertheless, the other assumptions 
regarding capital costs, such as a user cost calculation, do tend to fall within the 
bounds I establish.

A. Labor Costs, Proprietors’ Income, and Taxes

Prior to detailing how capital costs are handled to form bounds on the elasticities, I 
describe how I allocate proprietors’ income to different factors of production. I follow 

10 There are minor discrepancies between the NAICS classifications in the Fixed Asset Accounts and the IO 
tables. These are straightforward to manage in that the fundamental classification system is the same. Details are 
in the online Appendix.
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Gomme and Rupert (2004) and assign a share of proprietors’ income and produc-
tion taxes to labor equal to the ratio of reported compensation to nonproprietors 
value added. Hence, the cost of labor is calculated according to

(12)	​COS​T​iLt​​  =  COM​P​it​​ + ​(PRO​P​it​​ + TA​X​it​​)​​(​ 
COM​P​it​​  _______________________   

VAL​U​it​​ − TA​X​it​​ − PRO​P​it​​
 ​)​,​

where ​COM​P​it​​​ is reported labor compensation in industry ​i​ at time ​t​, ​PRO​P​it​​​ is pro-
prietors’ income, ​VAL​U​it​​​ is value added, and ​TA​X​it​​​ is taxes and subsidies. Gomme 
and Rupert (2004) argue that this provides a more accurate representation of the 
labor component of proprietors’ income than using the number of self-employed 
workers and a measure of average wages, as proprietors are likely to be high pro-
ductivity (and hence high wage). This also apportions production taxes to labor in 
the same manner.

In the online Appendix, I show variations on this assumption where I either assign 
all proprietors’ income as labor costs (i.e., ​COS​T​iLt​​  =  COM​P​it​​ + PRO​P​it​​​) or all 
proprietors’ income as capital cost (i.e., ​COS​T​iLt​​  =  COM​P​it​​​). In the former case, 
the results are quite similar to the baseline using the Gomme and Rupert approxi-
mation. In the latter case, the implied costs of capital are higher, implying higher 
measures of ​​ϵ​Kt​​​ (and lower estimates of ​​ϵ​Lt​​​). However, this seems an unlikely case, 
given the widespread use of adjustments to proprietors’ income that assign much of 
it as labor income. Recent work by Smith et al. (2019) also suggests that much of 
what may be reported as gross operating surplus by pass-through firms is ultimately 
a payment to labor, further reinforcing that treating most proprietors’ income as 
labor income as in Gomme and Rupert is the most reasonable choice.

B. Boundaries for Capital Costs

With the labor cost determined, it remains to impute capital costs, ​COS​T​iKt​​​, for 
each industry in each year and to calculate the values of the various elasticities. In 
what follows, I only discuss values for ​​ϵ​Kt​​​ to be concise. In each case, I also obtain 
estimates for the labor elasticity, ​​ϵ​Lt​​​. In every case, one can use the values of ​​ϵ​Kt​​​ to 
infer values for the labor elasticity of ​​ϵ​Lt​​  =  1 − ​ϵ​Kt​​​. The annual estimates for all 
the elasticities, under each of the assumptions about capital costs, are available in 
the online Appendix.

No-Profit Assumption.—The first assumption is that there are zero economic 
profits. This means that gross operating surplus minus any adjustments for propri-
etors’ income and taxes represents a payment to capital. To be specific, for this 
assumption, I set

(13)	​ COS​T​ iKt​ 
NoProf​  =  VAL​U​it​​ − COS​T​iLt​​,​

where ​COS​T​iLt​​​ are labor costs as explained in (12). Given this cost of capital for an 
industry, I can then calculate the capital cost share, ​​λ​iKt​​​. In addition, I can calculate 
the cost shares of all other intermediates, ​​λ​ijt​​​, and the cost shares of labor, ​​λ​iLt​​​.
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With the cost shares in hand, it is straightforward to calculate ​​ϵ​ Kt​ 
NoProf​​ given the for-

mula in (9). Under the no-profit assumption, the cost of capital is at an upper bound, 
and thus the cost share of capital in each industry is at an upper bound. Given that 
the aggregate capital elasticity is a weighted average of the industry-specific capital 
cost shares, this gives a plausible upper bound for the aggregate elasticity.

This bound is not absolute. The choice of capital costs by necessity impacts the 
intermediate shares of total costs, ​​λ​ijt​​​, in the matrix ​Λ​ and hence the Leontief inverse 
built from it. Thus, the weights in the weighted sum of industry-specific capital 
cost shares depend on the choice of capital costs. It is theoretically possible that 
one could lower (raise) total capital costs in the economy and yet receive a higher 
(lower) estimated elasticity. In practice, as I show in the online Appendix, the direct 
effect of lower (higher) capital costs dominates the indirect effect on the interme-
diate good shares in the Leontief inverse, and the elasticity is also lower (higher) 
in such a case. Hence, the no-profit assumption on capital costs is a plausible upper 
bound on the elasticity, but not a mathematically strict one.

Figure 1 plots the estimated values of ​​ϵ​ Kt​ 
NoProf​​ over time for the United States as the 

heavy black dashed line. In Figure 1, one can see that the no-profit capital elasticity 
begins at 0.33 in 1948 and rises with mild fluctuations to a value of 0.39 by 2018. 
This no-profit upper bound for the capital elasticity tracks the value of one-third 
(with a mild dip in the 1970s) from 1948–1995. The value of one-third would only 
be appropriate in those years if one believed there were zero economic profits in the 
economy. After 1995, there is shift up in the no-profit upper bound to around 0.37 
on average, making the value of one-third appear more plausible. Table 2 provides 
summary statistics of the estimated capital elasticities

Depreciation Costs Only.—The second estimates of the aggregate elasticities are 
made using depreciation to impute the cost of capital. Depreciation by itself misses 
costs associated with the ongoing financing of the capital stock by firms, but it has 
the advantage of being reported on an industry-by-industry basis. We can infer that 
industries faced at least a depreciation cost for their capital. From that perspective, 
using depreciation provides a plausible lower bound for capital costs. The drawback 
of this approach is that depreciation is imputed by the BEA for each industry based 
on historical investment spending and assumed depreciation schedules for various 
types of capital.11 In addition, as mentioned in the prior subsection, the choice of 
capital cost affects the industry-specific capital cost shares as well as the intermedi-
ate good shares of total costs, which means the depreciation cost assumption gives 
a plausible lower bound on the elasticity—but not a strict one.

In terms of the structure outlined above, I measure capital costs in industry ​i​ as 
follows:

(14)	​ COS​T​ iKt​ 
Depr​  =  DEP​R​it​​.​

11 The depreciation approach implies that the real return on capital is positive. In the user cost assumption dis-
cussed below, I allow for the possibility of a negative real return.
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At this point, the logic is identical to the prior subsection. These costs allow me 
to calculate cost shares for each industry, and those cost shares are used in equation 
(9) to calculate the aggregate capital elasticity, ​​ϵ​ Kt​ 

Depr​​.
In Figure 1, the capital elasticity ​​ϵ​ Kt​ 

Depr​​ is plotted from 1948–2018 as the solid 
black line. As expected, this series lies everywhere below the no-profit estimates. 
The estimated elasticity begins at 0.16 in 1948 and finishes at 0.25 in 2018, for an 
increase of 0.09 that is very similar to the increase in the no-profit upper bound.

From the figure, it is also apparent that the gap between the no-profit upper bound 
and the depreciation-based lower bound remains roughly constant. In the figure, that 
range is shaded in light gray to indicate the plausible values for ​​ϵ​Kt​​​ in any given year. 
Note that this range is not a confidence interval, and nothing about it implies that the 
actual capital elasticity lies in the middle of the range or that it is constant. The true 
elasticity may fluctuate within these bounds over time.

C. Alternative Capital Cost Estimates

The prior subsection showed the boundaries, and here I present two more esti-
mates of the capital elasticity that do not make sense as bounds but provide infor-
mation on the actual path of the elasticity and whether those bounds are sensible.

Table 2—Estimates of US Capital Elasticity, ​​ϵ​K​​​, under Different Assumptions

Summary statistics, ​​ϵ​Kt​​​, 1948–2018: Subperiod means:

Mean Median Minimum Maximum 1948–2000 2000–2018
Assumption (1) (2) (3) (4) (5) (6)
Panel A. Baseline
No profit 0.337 0.328 0.291 0.389 0.323 0.374
Investment cost 0.264 0.265 0.218 0.296 0.257 0.285
User cost 0.280 0.290 0.095 0.412 0.276 0.291
Depreciation cost 0.204 0.206 0.153 0.259 0.189 0.245

Panel B. Private business sector
No profit 0.280 0.272 0.235 0.329 0.269 0.310
Investment cost 0.181 0.184 0.137 0.218 0.172 0.205
User cost 0.210 0.217 0.073 0.321 0.206 0.223
Depreciation cost 0.141 0.148 0.089 0.189 0.129 0.177

Panel C. Decapitalizing IP
No profit 0.306 0.299 0.261 0.354 0.295 0.337
Investment cost 0.226 0.226 0.203 0.245 0.226 0.228
User cost 0.238 0.248 0.062 0.375 0.240 0.232
Depreciation cost 0.169 0.168 0.142 0.205 0.161 0.192

Panel D. Private business sector and decapitalizing IP
No profit 0.255 0.251 0.215 0.296 0.248 0.274
Investment cost 0.146 0.146 0.126 0.182 0.146 0.146
User cost 0.170 0.169 0.045 0.287 0.173 0.163
Depreciation cost 0.111 0.114 0.081 0.137 0.107 0.122

Notes: The calculation of ​​ϵ​Kt​​​ is described in the text. The panels of the table refer to different assumptions made 
regarding the inclusion/exclusion of owner-occupied housing and IP capital (the baseline includes both). Within 
the panel, the rows refer to assumptions about the capital costs by industry, ​COS​T​iKt​​​, that are used to calculate ​​ϵ​Kt​​​. 
The specifics of those assumptions are discussed in the text.
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Investment Costs.—Here, I use observed investment spending by each industry as 
the measure of capital costs. One way this imputation may be sensible is to consider 
an economy following a Golden Rule, where all capital income is used to purchase 
capital goods. As capital income to one person represents a capital cost to another, 
investment spending would measure capital costs.

An additional advantage of the investment cost assumption is that this data is 
measured directly from industry-level spending. Depreciation costs by themselves 
are estimated by the BEA based on depreciation schedules that may not accurately 
reflect true industry experience. Arguably, the use of observed investment spending 
to measure capital costs may be the choice with the fewest assumptions built in.

In this case, the cost of capital is measured as follows:

(15)	​ COS​T​ iKt​ 
Inv​  =  IN​V​it​​.​

Once again, the logic at this point is standard. Using these costs, I obtain cost 
shares for capital, labor, and intermediates, and using (9), I can calculate ​​ϵ​ Kt​ 

Inv​​.
Figure 2 plots the estimated capital elasticity from 1948–2018 with the line marked 

with x’s, as well as the original bounds. This estimate begins at 0.22 in 1948 and runs 
to 0.29 in 2018, demonstrating a less dramatic increase than either the depreciation 
or no-profit bounds. Based on investment costs, the capital elasticity ends up at the 
lower depreciation-based bound around the time of the Great Recession in 2009 
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Figure 2. Alternative Estimates of the Aggregate Capital Elasticity, ​​ϵ​Kt​​​, United States 1948–2018

Notes: The estimate of the aggregate capital elasticity, ​​ϵ​K​​​, is made using equation (9) under various assumptions 
explained in the text. The no-profit and depreciation-only bounds are the same as in Figure 1. The investment cost 
assumption assumes capital costs equal reported investment, and the user cost assumption assumes capital costs are 
determined by a standard user cost formula from Hall and Jorgenson (1967). The primary data source for all esti-
mates is the BEA, with input-output tables, capital stocks by industry, compensation by industry, and value added 
by industry using different industrial classifications merged according to a methodology described in the online 
Appendix. Additional information on nominal rates of return and inflations rates used for the user cost calculation 
is from the Federal Reserve.
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and remains close to that lower bound until 2018. This is consistent with investment 
spending by industry that acts solely to replace depreciating capital in that period.

Of note, the investment cost elasticity estimate remains everywhere inside the 
bounds set by the deprecation-only and no-profit estimates. The relatively small 
increase over time in the investment cost elasticity estimates reminds one that the 
true capital elasticity may well move between the bounds over time and does not 
necessarily increase just because the bounds do. In addition, the capital elasticity 
based on investment costs is everywhere below the value of one-third.

User Cost of Capital.—As a last alternative, I turn to the standard user cost of 
capital calculation of Hall and Jorgenson (1967). This has been used extensively to 
estimate the cost of capital, including in recent work on labor and capital’s share 
of aggregate GDP (Barkai 2020), with the downside of needing to make several 
assumptions about the financing costs facing industries and expectations of inflation 
of capital goods.

The calculation of the overall cost of capital for an industry ​i​ is more complex 
than the prior assumptions. First, I allow for three types of capital goods—struc-
tures, equipment, and IP—which is available from the BEA capital stock data (US 
BEA 1947–2022, 1901–2022). Each industry ​i​ has a stock of capital of each type ​j​ 
at time ​t​, ​​K​ijt​​​. Each industry ​i​ also faces a rental rate for capital of type ​j​ at time ​t​, ​​R​ijt​​​
, and these rental rates are allowed to vary by industry.

Overall, the cost of capital to industry ​i​ at time ​t​ is

(16)	​ COS​T​ iKt​ 
User​  = ​   ∑ 

j∈st,eq,ip
​ 

 

 ​​ ​ K​ijt​​ ​R​ijt​​.​

The rental rate for each type of capital in a given industry is given by

(17)	​​ R​ijt​​  = ​ (In​t​it​​ − E​[​π​ijt​​]​ + ​δ​ijt​​)​ ​ 
1 − ​z​jt​​ ​τ​t​​

 _ 
1 − ​τ​t​​

 ​​  ,

where ​In​t​it​​​ is the nominal interest cost of financing facing industry ​i​ at time ​t​, 
explained below. ​E​[​π​ijt​​]​​ is the expected inflation in the price of capital type ​j​ for 
industry ​i​ at time ​t​, and ​​δ​ijt​​​ is the cost of depreciation. The term ​​z​jt​​​ is the depreciation 
allowance for taxation of capital type ​j​ at time ​t​, and ​​τ​t​​​ is the effective corporate tax 
rate at time ​t​.

In this baseline, the expected inflation rate ​E​[​π​ijt​​]​​ for a given capital type ​j​ in 
industry ​i​ at time ​t​ is just observed inflation rate in ​t​, based on the price indices by 
capital type in the BEA fixed asset accounts (US BEA 1947–2022, 1901–2022). 
There are only small changes to the results if I instead proxy expected inflation 
using forward-looking or backward-looking inflation over different spans (one-year, 
three-year, five-year).

The nominal interest rate facing industry ​i​ at time ​t​ is calculated as a weighted 
average of market interest rates for different types of financing (e.g., corporate bonds, 
equity, mortgages), denoted by ​In​t​mt​​​, and the weights vary by industry. Formally,

(18)	​ In​t​it​​  = ​ ∑ 
m

​ 
 

 ​​ ​ s​imt​​ In​t​mt​​​ ,
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where ​​s​imt​​​ is the share of financing of type ​m​ in industry ​j​, and ​In ​t​mt​​​ is the observed 
interest rate on that type of financing.

While this is industry specific, it primarily differentiates between government, 
housing, and the private sector. Full details are available in the online Appendix 
on sources for the shares and rates used. A brief summary is that private industries 
are financed using a combination of corporate AAA bonds, corporate Baa bonds, 
short-term loans, and equity, with the shares (​​s​imt​​​) determined from industry-level 
balance sheets provided by the integrated macroeconomic accounts (US BEA 1960–
2023). Housing is assumed to be financed using 30-year mortgages. Government 
industries are assumed to be financed using ten-year Treasury bonds (federal) or 
municipal bonds (state/local).12

Given the values of ​In​t​it​​​, I am able to calculate the rental rate of capital facing 
each industry ​i​ for each capital type ​j​, ​​R​ijt​​​, and then the overall cost of capital for 
industry ​i​ at time ​t​, ​COS​T​ iKt​ 

User​​. With those costs of capital, I can then proceed in the 
same manner as before and calculate the elasticity ​​ϵ​ K​ User​​ using equation (9).

In Figure 2, the series of ​​ϵ​ K​ User​​ is plotted from 1948–2018 marked by o’s. This 
is far more variable over time than the bounds set by depreciation and no-profit 
assumptions, as well as more variable than the estimates based on investment costs. 
However, the user cost of capital estimates stay for the most part inside the bounds 
set by depreciation and no profit.

There are notable exceptions. In eight years (1950, 1973, 1974, 1977, 1978, 
2004, 2005, and 2013), the user cost of capital is below the bound set by the depre-
ciation cost estimates. The observations in the 1970s are due to very high inflation 
of all capital goods, which in the user cost calculation results in very low rental rates 
and hence a low cost to capital. The 2004 and 2005 observations are due to very 
high inflation in structures. The years 1950 and 2013 appear to be a combination 
of slightly higher inflation in structures and low financing rates. Nevertheless, these 
deviations below the bound of depreciation cost estimates are not large and appear 
to be short-lived.

On the other end, there is a continuous stretch from 1981 through 1992 where 
the user cost estimates are above the upper bound set by the no-profit estimates. 
These are due to the relatively high nominal rates on financing during this period 
and the lower values observed for inflation on all capital goods. These deviations 
are not large after 1984. If the user cost estimates of the elasticities are correct, then 
they would imply negative economic profits during this period. Alternatively, the 
user cost calculations may not be accurately representing the cost of capital in this 
period.

Regardless, in 51 of the 71 years reported, the estimate of ​​ϵ​ K​ User​​ falls between 
the bounds denoted by the no-profit and depreciation cost estimates. Over time, 
the trend of the user cost estimates appears to track the trend of the investment cost 

12 Treating government in this manner assumes that it acts similar to private industries in making decisions on 
capital use. An alternative is to assert that user costs of capital to government industries are equal to the reported 
depreciation, which would be consistent with how the BEA calculates value added for government. Doing so does 
not alter the results in any appreciable way.
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estimates, and both imply an elasticity that is below one-third for much of this time 
period.

IV.  Comparisons and Alternative Assumptions

None of the four estimated series of ​​ϵ​Kt​​​ in Figure 2 are “right.” Without direct 
measurement of the cost of capital faced by industries and better information on the 
split of proprietors’ income, any estimate of the aggregate elasticities is necessarily 
based on some assumptions. Beyond that, these estimates can be compared to naïve 
estimates based on economy-wide ratios to see how informative those ratios are and 
to estimates made under different assumptions about which industries (e.g., private 
business only) or capital types (e.g., IP) are included in the calculations.

A. Comparison to Aggregate Ratios

The estimates of the aggregate elasticity are built using industry-level data with 
input-output relationships, but it is informative to compare that elasticity to aggre-
gated data on capital and labor costs. Such aggregate data is what has been typically 
used to estimate these elasticities in the past and has the advantage of being much 
more readily available.

Using the notation developed above, define aggregate capital costs as a share of 
all factor costs (labor plus capital), ​​s​ Kt​ 

Cost​​, as follows:

(19)	​​ s​ Kt​ 
Cost​  = ​ 

​∑ j=1​ 
J  ​​ COS​T​jKt​​

  _________________________   
​∑ j=1​ 

J  ​​ COS​T​jKt​​ + ​∑ j=1​ 
J  ​​ COS​T​jLt​​

 ​.​

By definition, under the no-profit scenario, ​​s​ Kt​ 
Cost​​ is identical to ​​ϵ​Kt​​​ (Baqaee 

and Farhi 2019, 2020), and that result holds here as well. The equality of ​​s​ Kt​ 
Cost​​ and ​​

ϵ​Kt​​​ does not hold under the other assumptions regarding capital costs, as they all 
imply that some amount of economic profits are being earned.

Figure 3 plots the series for ​​ϵ​Kt​​​ and ​​s​ Kt​ 
Cost​​ under different assumptions about cap-

ital costs. For both the investment cost and depreciation cost scenarios, the values 
of the cost ratios, ​​s​ Kt​ 

Cost​​ (in gray), are almost everywhere below the estimated values 
of the elasticities, ​​ϵ​Kt​​​ (in black).13 For the investment cost series, there are some 
exceptions to that around 1950. While the cost shares are below the elasticities, the 
gaps are not that large. For the depreciation cost assumption, the gap averages about 
0.03 over the entire period but, as can be seen, tends to widen over time. For the 
investment cost assumption, the gap averages about 0.02 over the entire period and 
again tends to widen over time.

From the figure, the cost ratios appear to be reasonable approximations to the 
values of the elasticities. Given that the aggregate data needed to calculate ​​s​ Kt​ 

Cost​​ are 
more widely available than the detailed input-output data needed to estimate ​​ϵ​Kt​​​, this 
may be useful in certain contexts.

13 The labor elasticities therefore all lie generally below their corresponding cost ratio.



488	 AMERICAN ECONOMIC JOURNAL: MACROECONOMICS� OCTOBER 2024

The differences between ​​ϵ​Kt​​​ and ​​s​ Kt​ 
Cost​​ are due to economic profits. I provide a 

more thorough theoretical comparison of ​​ϵ​Kt​​​ and ​​s​ Kt​ 
Cost​​ in the online Appendix, but 

the general intuition is straightforward. ​​s​ Kt​ 
Cost​​ depends on industry-specific capital 

cost shares and the allocation of total costs across industries. Markups skew the 
allocation of total costs across industries—and hence skew the value of ​​s​ Kt​ 

Cost​​. When 
markups are positively correlated with industry-specific capital cost shares, there 
are fewer costs expended on the high-markup/capital-intense industries, and hence ​​
s​ Kt​ 

Cost​​ is pushed below ​​ϵ​K​​​. Furthermore, when industries that have high capital shares 
of costs tend to be upstream in the input-output structure, multiple marginalization 
lowers their share of total costs—also pushing ​​s​ Kt​ 

Cost​​ below ​​ϵ​K​​​. In general, the larger 
markups are overall, the larger these effects, and hence the gaps in Figure 3 between ​​
ϵ​Kt​​​ and ​​s​ Kt​ 

Cost​​ are generally largest for the depreciation cost scenario. I return to the 
subject of markups in the next section, comparing the markups implied in my esti-
mates to those in the literature and finding that they are consistent.

B. Private Business Sector

Up to this point, I have been working with data that covers all industries, includ-
ing those for which value added and capital costs may be particularly hard to mea-
sure correctly (e.g., government, owner-occupied housing). To see the influence of 
the inclusion of government (both general government and government enterprises 
at federal and state/local levels) and owner-occupied housing on the aggregate elas-
ticities, I remove them both from the calculation of elasticities. In practice, this 
means deleting their rows and columns from the IO matrix ​Λ​ as well as their entries 

1950 1960 1970 1980 1990 2000 2010 2018
Year

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ap

ita
l s

ha
re

 o
f c

os
ts

Elasticity estimate:

Aggregate cost share:
Depreciation costs

Investment costs

No profit

Depreciation costs

Investment cost

Figure 3. Comparison of Estimated Elasticity, ​​ϵ​Kt​​​, to Cost Ratio, ​​s​ Kt​ 
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Notes: Estimate of the aggregate capital elasticity, ​​ϵ​Kt​​​, is made using equation (9) under various assumptions 
explained in the text and denoted in the legend. The cost ratio of capital, ​​s​ Kt​ 

Cost​​, is calculated as in equation (19) 
under the same assumptions. There is no separate line for the cost ratio under the no-profit assumption because this 
is identical to ​​ϵ​Kt​​​ by definition.
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from the vector of final-use shares in ​Γ​.14 This makes the coverage of the calculation 
equivalent to the “Private business sector” coverage that the BLS uses.15

Figure 4 plots the estimated value of the capital elasticity bounds (the no-profit 
and depreciation cost assumptions) for the private business sector as dark black 
lines, and the plausible range for the capital elasticity is shaded in dark gray. For 
comparison, the original bounds using all industries are plotted using the dashed 
lines, and that range is shaded in light gray.

As can be seen, the range of the capital elasticity for the private business sector 
lies everywhere lower than the range for the aggregate economy. In general, both 
bounds are shifted down by approximately 0.06. Notably, the capital elasticity for 
the private business sector lies definitively under one-third throughout the period, 
and only during the years 2010–2018 does the upper bound reach that value. The 
naïve value is too high if one is considering just private business sector activity.

In Table 2, panel B, summary statistics are reported for the private business sec-
tor alone. Comparing panel B to panel A, the downward shift of about 0.06 in the 
aggregate capital elasticity shows up regardless of how capital costs are calculated. 

14 In practice, there are several industries that are deleted, depending on the year. NAICS includes entries for 
federal general government (defense), federal general government (nondefense), federal government enterprises, 
state and local general government, and state and local government enterprises. Prior to 1997, the federal general 
government categories are combined into a single industry. With respect to housing, both housing and other real 
estate are excluded. Prior to 1997, those two industries are aggregated into a single real estate industry.

15 One could also examine the “Non-farm private business sector” by eliminating the industries for farming 
and forestry, fishing, and other agricultural activities. In practice, eliminating those industries does not change the 
elasticity by an appreciable amount compared to the “Private business sector.”
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Figure 4. Estimates of Aggregate Capital Elasticity, Private Business Sector, United States 1948–2018

Notes: The estimate of the aggregate capital elasticity, ​​ϵ​Kt​​​, is made using equation (9) in the text. Dashed lines refer 
to the upper (no-profit) and lower (depreciation-only) bounds of ​​ϵ​Kt​​​ calculated including all industries. The dark 
lines refer to the upper (no-profit) and lower (depreciation-only) bounds of ​​ϵ​Kt​​​ calculated for the private business 
sector (e.g., excluding owner-occupied housing and government).
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This has the implication that the aggregate labor elasticity is estimated to be higher 
by about 0.06 in the private business sector.

Mechanically, the lower elasticity in the private business sector comes almost 
entirely from the fact that the housing industry has a very high capital cost share 
under any set of assumptions. The average capital cost share is 0.94 under the 
no-profit assumption, 0.89 under the investment cost assumption, 0.83 under the 
user cost assumption, and 0.80 under the depreciation-only assumption. Full sta-
tistics on these shares are available in the online Appendix. The estimates of ​​ϵ​Kt​​​ 
are weighted averages of cost shares across different industries (with the weights 
depending on input-output linkages), so the exclusion of owner-occupied housing 
lowers ​​ϵ​Kt​​​ for the private business sector. Government cost shares are similar to the 
private business sector, and hence, excluding government by itself does not alter ​​ϵ​Kt​​​ 
by an appreciable amount.16

If I restrict myself to the private business sector of the economy, then the likely 
size of ​​ϵ​Kt​​​ is well below one-third—and even below 0.30. Nevertheless, from 
Table 2, panel B, columns 5 and 6, one can see that the elasticity under all assump-
tions did rise over time, and in amounts very similar to the rise in the elasticity 
when the entire economy is considered in panel A. The private business sector has 
a similar trajectory of ​​ϵ​Kt​​​ over time, but it is shifted down compared to the overall 
economy.

C. Elasticities by Type of Capital

Up to this point, I have focused on the elasticity of GDP with respect to aggregate 
capital, ​​ϵ​Kt​​​. But the national accounts data include information on three types of 
capital: structures, equipment, and IP. It is feasible to calculate separate elasticities 
for each type separately: structures (​​ϵ​st,t​​​), equipment (​​ϵ​eq,t​​​), and IP (​​ϵ​ip,t​​​).

To construct these estimates, one simply has to expand the matrix ​Λ​ in equation 
(6) to include separate columns denoting the cost shares of each type of capital for 
each industry, and ensure that there are rows of zeroes included in ​Λ​ for each type. 
All the capital data for the three types is available from the BEA sources men-
tioned previously. For the depreciation lower bound, the investment cost assump-
tion, and the user cost assumption, the calculations for the separate elasticities are 
straightforward.

The only issue arises with the no-profit upper bound. In this case, the total cost 
of capital is calculated from equation (13) by subtracting labor costs from value 
added. This does not provide any information on how those implied capital costs are 
allocated to structures, equipment, and IP. As a baseline, I distribute the total capital 
cost in the no-profit scenario across capital types in proportion to the amount of 

16 Government capital costs are measured differently than for the rest of the economy. When the BEA imputes 
government value added, it combines measured government labor compensation with government capital depreci-
ation. Thus, by construction, the no-profit (value added minus labor compensation) and depreciation capital costs 
are identical for the government industries. In this sense, the presence of the government in the baseline calculation 
of ​​ϵ​Kt​​​ pushes the bounds closer together.
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investment done in that capital type in the given year.17 More specifically, for capital 
type ​k  ∈ ​ (st, eq, ip)​​ in industry ​i​ at time ​t​, I calculate

(20)	​ COS​T​ ikt​ 
NoProf​  = ​ (VAL​U​it​​ − COS​T​iLt​​)​ ​ 

IN​V​ikt​​ _______________  
​∑ k∈​(st,eq,ip)​​ 

 
 ​​  IN​V​ikt​​

 ​.​

Figure 5 plots the estimates of ​​ϵ​st,t​​​, ​​ϵ​eq,t​​​, and ​​ϵ​ip,t​​​ separately, each with a no-profit 
upper bound, a depreciation lower bound, and the estimates based on investment 
costs included. I did not plot the user cost series to keep the figure clear. In the fig-
ure, the bounds for structures appear to be somewhat stable, with a range of about 
0.09–0.16  throughout the time period, although the lower bound does appear to 
rise to around 0.10 between 2000 and 2009. For equipment, there is a similar sta-
bility in the bounds, and the estimated elasticity appears to be in the range of 0.08–
0.13 from 1948–2018. IP displays a very narrow range from 1948–2000, and that 
range expands after 2000. Moreover, the range of elasticities for IP climbs from 
0.01–0.03 around 1948 to 0.06–0.08 by 2018.

17 An alternative is to allocate the aggregate no-profit capital costs to capital types in proportion to the stock of 
each capital type in the given year. This creates some issues with respect to IP, as the absolute size of the IP stock 
prior to 1970 is so small. For those years, the implied cost of capital in the no-profit scenario is below the reported 
cost of IP depreciation or IP investment.
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Figure 5. Estimates of Capital Elasticity, by Type of Capital

Notes: The estimates of the capital elasticities for structures (​​ϵ​st,t​​​), equipment (​​ϵ​eq,t​​​), and IP (​​ϵ​ip,t​​​) are made using 
equation (9) in the text. For each type of capital, three estimates are shown based on assumed cost of capital: 
no-profit assumption, depreciation cost only, and investment costs. See text for details of the three assumptions.
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By construction, the aggregate elasticity ​​ϵ​Kt​​​ is the sum of the three individual 
elasticities in any given year. Hence, Figure 5 provides information on what drove 
the change in the boundaries of ​​ϵ​Kt​​​ over time; it would appear that the increased 
importance of IP in production was responsible for the shift up.

Table  3 gives the summary statistics for the three types of capital under each 
possible assumption regarding their individual costs. The average elasticity for 
structures is 0.16 under the no-profit assumption and 0.09 under the depreciation 
assumption. In panel B, the equipment elasticity averages 0.13 under the no-profit 
assumption and 0.08 in the depreciation cost assumption. In both cases, there is lit-
tle evidence of an increase in the bounds over time, and in fact, the no-profit upper 
bound was lower in 2000–2018 than in 1948–2000. Finally, the IP elasticity had an 
average no-profit upper bound of 0.05 and a depreciation cost lower bound of 0.03. 
However, in both cases those bounds increased from 1948–2000 to 2000–2018 from 
values between 0.03–0.04 to values between 0.06–0.08.

D. Decapitalizing IP

The prior subsection has shown that an increased importance of IP in produc-
tion seems largely responsible for the observed increase in the bounds on the 
aggregate elasticity ​​ϵ​Kt​​​. This possibility is consistent with the findings in Koh, 
Santaeulàlia-Llopis, and  Zheng (2020), who showed that the revision to the 
national accounts to capitalize IP, begun by the BEA with their eleventh revision 
in 1999, can explain essentially all of the reported decline in labor’s share of GDP. 
While I am concerned here with the elasticity of GDP with respect to capital (and 

Table 3—Estimates of US Capital Elasticity, by Capital Type

Summary statistics, ​​ϵ​it​​​, 1948–2018: Subperiod means:

Mean Median Minimum Maximum 1948–2000 2000–2018
Variant (1) (2) (3) (4) (5) (6)
Panel A. Structures
No profit 0.155 0.155 0.143 0.173 0.153 0.161
Investment cost 0.136 0.137 0.118 0.153 0.135 0.139
User cost 0.142 0.148 0.011 0.254 0.146 0.131
Depreciation cost 0.092 0.087 0.071 0.127 0.084 0.114

Panel B. Equipment
No profit 0.133 0.131 0.116 0.165 0.134 0.129
Investment cost 0.088 0.087 0.073 0.099 0.089 0.085
User cost 0.093 0.092 0.051 0.119 0.092 0.096
Depreciation cost 0.077 0.076 0.069 0.088 0.077 0.075

Panel C. IP
No profit 0.049 0.037 0.019 0.098 0.037 0.084
Investment cost 0.040 0.037 0.013 0.068 0.033 0.060
User cost 0.045 0.043 0.011 0.071 0.039 0.064
Depreciation cost 0.035 0.032 0.011 0.063 0.028 0.056

Notes: The calculation of ​​ϵ​it​​​ with ​i  ∈ ​ (st, eq, ip)​​ is described in the text. The panels of the table differ in the type 
of capital (structures, equipment, and IP) the elasticity is calculated for. Within each panel, the no-profit variation 
splits the total capital cost across the three capital types according to the amount of investment spending on that cap-
ital type in a given year. User cost, investment cost, and depreciation cost variants use costs of capital for that type 
calculated directly according to methods described in the text.
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labor), the same features of the national accounts that Koh, Santaeulàlia-Llopis, 
and Zheng (2020) identified may be relevant here.

In particular, in capitalizing IP (as opposed to treating it as an expense), the 
BEA revised up the value added of each industry by an amount equal to the sum of 
own-account and purchased IP. This also revised gross operating surplus by incorpo-
rating own-account IP and revised total depreciation to include that of IP. Following 
Koh, Santaeulàlia-Llopis, and Zheng (2020), I reverse these modifications to strip 
out the capitalization of IP and then estimate ​​ϵ​Kt​​​ again. Details of the modifications 
to the national accounts data required are in the online Appendix.

Decapitalizing IP changes the estimated aggregate elasticities. Figure 6 plots in 
the dark lines the upper (no-profit) and lower (depreciation-only) bounds for the 
elasticity ​​ϵ​Kt​​​ when IP is decapitalized from the national accounts. For comparison 
purposes, the dashed lines plot the upper (no-profit) and lower (depreciation-only) 
bounds under the baseline situation where IP is considered a capital good.

As can be seen, there is a distinct shift down in the range of plausible ​​ϵ​Kt​​​ values 
when IP is decapitalized. The upper bound is well below one-third throughout most 
of the time period and only rises above it in 2005–2018, and even then the differ-
ence is small. There is a similar story for the lower bound, which starts similar to 
the baseline in 1948, but remains much lower through 2018. Figure 6 indicates that 
an important part of the apparent rise in ​​ϵ​Kt​​​ over time was the capitalization of IP.

In Table 2, panel C, I show the summary statistics when IP is decapitalized. The 
mean and median values are lower under all assumptions compared to the baseline, 
by about 0.03. Perhaps more interesting are columns 5 and 6, which show that the 
implied rise in ​​ϵ​Kt​​​ over time was more muted when IP is decapitalized, but it does 
not disappear completely.
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Figure 6. Estimates of Aggregate Capital Elasticity, Decapitalizing IP, United States 1948–2018

Notes: The estimate of the aggregate capital elasticity, ​​ϵ​Kt​​​, is made using equation (9) in the text. Dashed lines refer 
to the baseline upper (no-profit) and lower (depreciation-only) bounds of ​​ϵ​Kt​​​ calculated with IP included as a capi-
tal good. The dark lines refer to the upper (no-profit) and lower (depreciation-only) bounds of ​​ϵ​Kt​​​ calculated when 
IP is decapitalized from the national accounts as described in the text.
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The mitigation of the upward trend is consistent with the findings of Koh, 
Santaeulàlia-Llopis, and Zheng (2020) on the mitigation of the downward trend in 
labor’s share of GDP. In both cases, decapitalizing IP leaves the size of labor com-
pensation the same but lowers the size of value-added in each industry. In my case, 
this implies that there is less value added left over to be attributed to capital costs, 
capital cost shares are lower across industries, and hence the size of ​​ϵ​Kt​​​ is lower.

Panel D of Table 2 shows summary statistics when IP is decapitalized in the pri-
vate business sector. The combined effect is to push the no-profit upper bound down 
lower, to an average of 0.26 for ​​ϵ​Kt​​​—with a maximum of 0.30—below one-third. 
The depreciation lower bound averages only 0.11—with a maximum of 0.14. With 
this narrow definition of economic output and excluding IP capital, it is plausible 
that the capital elasticity was below 0.3 on a regular basis.

V.  Markups and Comparison to Firm-Level Data

All the estimates of ​​ϵ​Kt​​​ up to this point have been made using exclusively national 
accounts data. Also, as noted previously, each capital cost assumption behind an 
estimate ​​ϵ​Kt​​​ implies a specific level of economic profits (and hence of markups). 
As a method of assessing how reasonable my estimates are, in this section, I use 
firm-level data from Compustat to create an alternative estimate of ​​ϵ​Kt​​​ and compare 
how the markups implied by my aggregate calculations compare to those derived 
from firm-level data.

A. Compustat Consistent Elasticities

I follow De Loecker, Eeckhout, and Unger (2020) in generating a dataset on US 
firms from Compustat for the period 1955–2016. Full details of the extract process 
and the calculations that follow are in the online Appendix. I use their methodology 
and code to derive two different estimates of the cost of capital by industry based on 
the firm-level data. The working assumption is that the cost structure and/or produc-
tion function of the firms in a given industry available in Compustat are indicative of 
the cost structure and/or production function of all firms in that industry.

The first estimate is based on cost data. De Loecker, Eeckhout, and  Unger 
(2020) calculate a capital cost for each firm, which I use directly. I then calculate 
total noncapital costs as the sum of cost of goods sold (COGS) and sales, gen-
eral, and administrative (SGA) expenses. For a two-digit industry, I sum the cap-
ital costs of all Compustat firms in that industry and sum the noncapital costs of 
all firms in that industry and take the ratio of capital to non-capital costs, denoted  
​COS​T​ iKt​ 

Stat​/COS​T​ iNonKt​ 
Stat  ​​. Using this Compustat-derived ratio for a given industry, I 

calculate

(21)	​ COS​T​ iKt​ 
StatCS​  = ​ 

COS​T​ iKt​ 
Stat​
 _ 

COS​T​ iNonKt​ 
Stat  ​

 ​​(COS​T​iLt​​ + COS​T​iMt​​)​​

to get an estimate of total capital costs in industry ​i​ that is consistent with the 
national accounts data, where the ​StatCS​ superscript refers to the use of cost shares 
(​CS​) from Compustat. The assumption here is that the COGS and SGA expenses in 
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Compustat are equivalent to total labor compensation plus intermediate goods pur-
chases. With this estimate of capital costs in an industry, I can calculate ​​ϵ​Kt​​​ as before.

A second estimate is made using industry-level production function estimates 
that De Loecker, Eeckhout, and  Unger (2020) do as part of their analysis. They 
provide the estimated coefficients on capital, COGS, and SGA from an estima-
tion procedure done for two-digit industries based on the Compustat firm-level 
data.18 I sum the elasticities from COGS and SGA to get a combined elasticity with 
respect to noncapital, and then again get a ratio of capital to noncapital, denoted  
​ELA​S​ iKt​ 

Stat​/ELA​S​ iNonKt​ 
Stat  ​​ for each industry. Given those, I calculate capital costs for an 

industry as

(22)	​ COS​T​ iKt​ 
 StatPF​  = ​ 

ELA​S​ iKt​ 
Stat​
 _ 

ELA​S​ iNonKt​ 
Stat  ​

 ​​(COS​T​iLt​​ + COS​T​iMt​​)​​,

where the superscript ​StatPF​ refers to the use of the production function (​PF )​ 
estimates from Compustat. Again, I can calculate a value for ​​ϵ​Kt​​​ given these 
industry-level costs.

What I hope is clear is that I am not using the firm-level data directly to calculate ​​
ϵ​Kt​​​. It is impossible to do that without the full input-output matrix of firm-to-firm 
transactions. Rather, I am using the Compustat firm-level data from De Loecker, 
Eeckhout, and Unger (2020) to derive measures of capital costs at the industry level. 
Hence the estimates of ​​ϵ​Kt​​​ are consistent with the Compustat firm-level data, but I 
am not aggregating over the firms themselves.

All those caveats aside, Figure 7 plots the estimated values of ​​ϵ​Kt​​​ using these 
Compustat-consistent capital costs alongside my existing estimates made using only 
national accounts data for the private business sector alone (i.e., excluding housing 
and government). What is apparent is that the Compustat-consistent estimates are 
quite similar in level and pattern to the estimates based on investment costs and, for 
the most, part fall within the bounds on ​​ϵ​Kt​​​ established by the nonprofit and depre-
ciation cost assumptions. The Compustat cost-share-based estimates dip below the 
depreciation lower bound once in the mid-1970s and then again several times start-
ing in 2005, although the absolute differences are not that large. Regardless, as men-
tioned previously, the depreciation cost bound is necessarily porous given that those 
costs are themselves estimates by the BEA.

Nevertheless, the fact that the Compustat-derived estimates of ​​ϵ​Kt​​​ are broadly in 
line with the estimates presented earlier gives some reassurance that those earlier 
estimates are not subject to gross errors or are unrepresentative of the experience of 
large firms in the economy.

18 These are the “production function two” estimates from De Loecker, Eeckhout, and  Unger (2020). This 
estimation treats what are typically considered overhead costs, SGA, as a factor of production. As there is no way 
to separate the national accounts data on labor compensation into payments for variable versus overhead labor, 
this production function is most applicable here. I discuss this more in the online Appendix, but their production 
function estimates do not assume constant returns to scale, which is why I use the ratio of elasticities rather than the 
absolute values, as the elasticity calculation here assumes constant returns in each industry.
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B. Markups and Economic Profits

As noted previously, different capital cost assumptions imply different levels of 
economic profits and hence markups. I can back out measures of markups from each 
series on ​​ϵ​Kt​​​ given the cost data that goes into the calculation. In particular, I can 
calculate an aggregate value-added markup as

(23)	​​ μ​ t​ 
VA​  = ​ 

​∑  j=1​ 
J  ​​V ​A​jt​​

  _____________________  
​∑ j=1​ 

J  ​​COS​T​jKt​​ + COS​T​jLt​​
 ​​

for each different assumption on capital costs, including those derived using the 
Compustat data. By construction, the value of ​​μ​ t​ 

VA​​ is equal to one for the no-profit 
assumption, but for all other assumptions on capital costs, ​​μ​ t​ 

VA​  >  1​ to some extent.19

Doing this calculation provides an additional check on the veracity of the elastic-
ity calculations, as if they imply markups that are unreasonable would give us pause 
in taking them seriously. Figure 8 shows, though, that the markups consistent with 
my estimates of ​​ϵ​Kt​​​ are within the range expected from other sources. The depre-
ciation cost estimate (solid black line) forms an upper bound on the gross output 
markup, just as it forms a lower bound on the elasticity, as this assumption allows for 
the largest plausible amount of economic profit. The investment cost–based markup 
lies everywhere below the depreciation cost bound, as does the markup derived 
using the Compustat-based production function estimates. The Compustat-based 

19 Gross output markups are reported in the online Appendix. They are not as large in absolute value as the 
value-added markups but show similar patterns over time.
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cost share estimates of the markup go above the depreciation cost bound, in partic-
ular after 2010, but as mentioned in the prior subsection, there are a number of rea-
sons that the Compustat-based estimates need not stay within bounds dictated solely 
by national accounts data. Overall, the data in Figure 8 show consistent stories from 
the different sources.

Of note, the value-added markups in Figure 8 display a slow but regular rise from 
around 1980 to at least 2010, at which point they tend to level off. This is consis-
tent with the overall story of rising markups told using different sources, although 
one has to be careful with direct comparisons. In particular, De Loecker, Eeckhout, 
and Unger (2020) document a steep increase in the average firm-level markup over 
time from 1980 to about 2000, and then another significant surge around 2015. That 
increase is far larger than what is seen in Figure 8. The markups here are based on 
industry-level costs or production functions derived from firm-level data but are not 
directly comparable to average firm-level markups that are the main finding in De 
Loecker, Eeckhout, and Unger (2020). A more apt comparison from De Loecker, 
Eeckhout, and Unger (2020) would be their Figure V and the industry-weighted or 
economy-wide averages they plot. The markups in Figure 8 are in line with those 
series.

While there is a distinct upward trend in the markups associated with the invest-
ment cost assumption or the two Compustat-derived series, in Figure 7, the capital 
elasticities associated with these three series of markups did not show any trend. 
These two findings are consistent and have some implications for how we view 
changes in market power and factor shares over time. The trendless nature of the 
elasticities means that capital did not become more important relative to labor in 
production. Nevertheless, the increased markups seen in Figure 8 imply that profits 
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were taking a larger share of value added, at least since 1980. The implication is that 
both capital and labor were earning a smaller share of value added over time, consis-
tent with the findings from Rognlie (2015) and Barkai (2020) using aggregate data.

VI.  An Application to Growth Accounting

The estimates I have found for the capital and labor elasticities are relevant to 
the calculation of TFP growth. In particular, common series on TFP growth assume 
that the labor elasticity can be estimated from labor’s share of GDP and that capi-
tal’s elasticity is one minus the labor elasticity. These elasticities correspond to the 
no-profit scenario I use and are only applicable if the economy has zero markups 
or market power. This assumption thus provides a bound on TFP growth over time 
but may not reflect actual TFP growth. Here, I show TFP growth over time when 
different assumptions about the elasticities are used.

The baseline calculation is as follows:

(24)	​ d ln TF​P​ t​ 
s​  =  d ln ​Y​t​​ − ​ϵ​ Kt​ 

s  ​ d ln ​K​t​​ − ​ϵ​ Lt​ 
s ​ d ln ​L​t​​.​

The difference in log TFP at time ​t​, ​d ln TF​P​ t​ 
s​​, depends on the difference in log out-

put, ​d ln ​Y​t​​​ minus the effects that are accounted for by capital growth, ​d ln ​K​t​​​, and 
growth in labor inputs, ​d ln ​L​t​​​. The data on output and inputs I take directly from the 
BLS. Growth in the labor input is made up of two parts—the growth rate of hours 
and the growth rate of labor quality—the latter of which is imputed by the BLS from 
the composition of the workforce and relative wages. Capital growth is measured as 
the growth in capital services, also imputed by the BLS.20

The superscript ​s​ in equation (24) refers to the assumption used to calculate the 
elasticities ​​ϵ​ Kt​ 

s  ​​ and ​​ϵ​ Lt​ 
s ​​. I calculate TFP growth for different values of ​s​ corresponding 

to the main series I described above—no profit, depreciation costs, investment costs, 
and user costs—as well as for series using the Compustat-derived estimates of cap-
ital costs described in the prior section. By construction, the series of TFP growth 
calculated using the values of elasticities under the no-profit assumption matches 
the standard BLS exactly (with minor rounding errors). The other assumptions ​s​ 
yield different series for ​d ln TF​P​ t​ 

s​​.
It is not obvious ex ante whether the growth rates of TFP will be higher or lower 

than the BLS baseline when I use different assumptions for the elasticities. Overall, 
the other assumptions give lower values for the capital elasticity and higher val-
ues for the labor elasticity. Whether this leads to higher or lower estimates of TFP 
growth depends on the relative size of capital growth and labor growth. To the extent 
that capital growth is higher than labor growth, this will tend to lead to higher esti-
mates of ​d ln TF​P​ t​ 

s​​ as the elasticities will reduce the implied role of input growth.
Figure 9 plots smoothed results for three of the series of ​d ln TF​P​ t​ 

s​​. The light gray 
lines are simple five-year moving averages (centered on the particular year) for each 

20 To impute capital services, the BLS allocates total capital costs across different types of capital. An implicit 
assumption in that imputation is that total capital costs are equal to all nonlabor value added or that there are no prof-
its. I take the BLS capital numbers as given and only focus on the effect of changing the elasticities in equation (24).
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series. The black lines are the Hodrick-Prescott-filtered trends in the growth rate of 
TFP from the different series. I’ve plotted only the moving averages and trends in 
the growth rates to focus on the larger movements rather than annual fluctuations.

There are two things that come out of this figure. The first and most obvious is that 
the no-profit assumption—which is the BLS baseline—on the elasticities produces a 
lower bound to the growth rate of TFP over time. The no-profit assumption generates 
a larger capital elasticity. When combined with the fact that capital tends to grow 
faster than labor (e.g., capital deepening), this mechanically results in a relatively 
low rate of TFP growth. Given that the no-profit condition is unlikely to be correct, 
the standard BLS estimate is understating TFP growth rates by a factor of some-
where between 0.05 and 0.30 percentage points per year, depending on the degree 
of market power in the economy. For context, the Boskin Commission (Boskin et al. 
1996) estimated that real consumption growth was understated by about 0.90 per-
centage points due to the overstatement of inflation, so the misstatement of TFP 
growth due to the choice of elasticity is up to one-third of that size. The differences 
compound into significant differences in the level of TFP. If we take the deprecia-
tion cost estimates seriously, then TFP in 2018 was 24 percent higher than under the 
no-profit BLS baseline due to the larger TFP growth rate.

A second implication from Figure 9 is more subtle. From the Figure, the general 
pattern of productivity growth is similar across the different estimates, despite the 
differences in the size of the growth rate. TFP growth was around 2.5 percent per year 
up until about 1965, and then there was a decline in TFP growth until 1980, bottoming 
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out around 0.5 percent per year. After that, there was a resurgence in TFP growth 
during the late 1990s and early 2000s before a TFP growth slowdown starting just 
before the financial crisis and extending past it to the end of the data series. In that 
sense, the overall story of productivity growth is not changed by the choice of esti-
mates of ​​ϵ​Kt​​​

At the same time, the consequences of the rise in market power documented in 
Figure 8 and broadly throughout the literature are apparent in Figure 9. One can 
see this in the comparison of the Compustat-derived estimate and how it moves 
between the two bounds formed by the no-profit and depreciation cost estimates. 
From about 1955 to 1980, the Compustat-based estimate lies between, but some-
what closer to, the growth rate formed by the no-profit assumption. Starting in 1980, 
and very apparent from 1995 to 2000, the Compustat-based estimate of TFP growth 
shifts toward the depreciation cost upper bound on the TFP growth rate and stays 
there after 2000. There is a similar shift if one uses the Compustat-derived cost share 
estimates or the investment cost estimates.

This shift is the manifestation of the rise in markups documented in the last sec-
tion. The increase in markups was associated with a decline in the share of value 
added being paid to both labor and capital. As Baqaee and  Farhi (2019, 2020) 
explain, declines in the share of value added going to factors of production is the 
necessary consequence of shifts out of low-markup and into high-markup industries 
and/or firms. Shifting resources from low-markup to high-markup industries or 
firms contributes to growth in measured TFP because the economy is using factors 
to produce more valuable output.

For the Compustat-based estimate in Figure 9, which is the one that is consistent 
with rising markups, the surge and then fall in productivity growth during and after 
the IT boom of the 1990s and early 2000s are both larger than what is found using 
the BLS no-profit baseline. Under the BLS baseline, the growth rate of TFP rose by 
about 1.06 percentage points from 1990 to 2000 and then fell by about 1.18 percent-
age points from 2000 to 2010. Under the Compustat-derived estimate, TFP growth 
rose by 1.31 percentage points from 1990 to 2000 and then fell by 1.26 percentage 
points. The IT revolution and the consequent slowdown are both more dramatic 
once more realistic numbers for ​​ϵ​Kt​​​ are considered rather than the baseline no-profit 
assumption behind the BLS numbers.

Table 4 shows the average annual growth rate of TFP, by decade, under different 
scenarios. Columns 1 through 3 show estimates based on the elasticities derived 
solely from national accounts under different assumptions, and columns 4 and 5 
show TFP growth using elasticities derived from the Compustat firm-level data, 
as described in the prior section. The general pattern decade by decade is similar 
across estimates (e.g., an acceleration in the 1960s and a slowdown in the 1980s), 
but the overall level of TFP growth differs, and the difference between decades 
changes depending on which elasticity estimate is used. For example, the drop from 
2000–2009 to 2010–2018 under the no-profit scenario in column 1 is 0.22 percent-
age points (0.76 to 0.54), while under the Compustat-based production function 
estimate the drop is 0.72 percentage points (1.17 to 0.45).

While the overall narratives surrounding productivity growth remain intact, the 
choice of elasticities has nontrivial effects on the size of fluctuations and the overall 
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level of TFP achieved. The understatements using the standard BLS methodology 
lead to general understatements of TFP growth and dampen the changes in mea-
sured TFP growth over time. The effects of this can be equivalent to about one-third 
of the effect attributed to the overstatement of inflation by the Boskin Commission. 
Variations on standard productivity accounting techniques to allow for elasticities 
that are consistent with observed trends in market power may be warranted to get a 
better picture of productivity growth over time.

VII.  Conclusion

The elasticities of GDP with respect to capital and labor are central parameters 
to almost any model of the economy. Values for these elasticities have traditionally 
been derived from factor share information, leading to the rule of thumb that the 
capital elasticity is equal to one-third and the labor elasticity two-thirds.

That rule of thumb requires several strong assumptions, including the existence of 
an aggregate production function and zero economic profits. In this paper, I applied 
the theory of Baqaee and Farhi (2019, 2020) to the calculation of these elasticities, 
which eliminates those strong assumptions and allows me to estimate the aggregate 
elasticities using industry-level data on costs of capital and labor.

Because of the standard problem of finding capital costs from national accounts 
data, I create bounds on the elasticities based on different assumptions. An upper 
bound for the capital elasticity is created by assuming there are zero economic prof-
its, and a lower bound is created by assuming that depreciation is the only cost of cap-
ital. Those bounds indicate a value of the capital elasticity that was 0.19–0.32 from 
1948–1995 in the United States and 0.24–0.37 from 1996–2018. If I limit the scope 
of the economy to the private business sector or decapitalize IP from the national 

Table 4—Average Annual TFP Growth (Percent), by Capital Cost Assumption

Assumption on capital costs

National accounts only Compustat derived

No profit Invest. cost Depr. cost Prod. funct. Cost shares
Years (1) (2) (3) (4) (5)
1950–1959 1.89 2.15 2.24 1.60 1.75
1960–1969 2.31 2.55 2.67 2.46 2.44
1970–1979 1.35 1.53 1.63 1.46 1.57
1980–1989 0.85 0.97 1.04 0.96 0.96
1990–1999 1.19 1.34 1.41 1.35 1.31
2000–2009 0.76 1.14 1.24 1.17 1.21
2010–2018 0.54 0.57 0.58 0.45 0.46

1948–2018 1.29 1.51 1.60 1.34 1.36

Notes: All growth rates reported in percents. TFP growth is calculated using equation (24) 
to find annual growth rate. For columns 1 through 3, this is done for the private business 
sector only (excluding government and housing) to match BLS procedures. The different 
assumptions on capital costs correspond to the ​s​ parameter in equation (24) and refer to dif-
ferent assumptions about capital costs used to calculate ​​ϵ​ Kt​ 

s  ​​ and ​​ϵ​ Lt​ 
s ​​. The no-profit capital cost 

assumption in column 1 is equivalent to the BLS assumption regarding elasticities. For col-
umns 4 and 5, the estimates of ​​ϵ​ Kt​ 

s  ​​ and ​​ϵ​ Lt​ 
s ​​ are made using Compustat firm-level data to get 

industry-level production function estimates or cost shares, respectively. See text for details. 
For the Compustat-based estimates, the average in 1950–1959 is for 1955–1959, and the aver-
age from 2010–2018 is for 2010–2016, due to limitations in the availability of data.
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accounts, those bounds are shifted down by between 0.03–0.07 in each year. Most 
of the increase in the bounds after 1995 appears to be due to an increased elasticity 
with respect to IP capital, while the elasticities with respect to structures and equip-
ment remained stable throughout the period 1948–2018. Elasticities derived to be 
consistent with Compustat data on publicly traded companies deliver estimates that 
are in line with these bounds.

The results suggest that the rule of thumb—alpha equal one-third—is likely to 
overstate the size of the capital elasticity, at least for much of the time frame con-
sidered and particularly in the presence of market power. This has consequences 
for things such as growth accounting. I show that common BLS estimates of the 
TFP growth rate and level are likely understated and that the IT-related productivity 
growth surge in the 1990s and subsequent slowdown in the twenty-first century were 
both more severe than typical BLS estimates would suggest.

While the overall results show that the rule of thumb overstates the capital elastic-
ity (and understates the labor elasticity), it is not wildly inaccurate. Going forward, 
papers that require an estimate of the capital and labor elasticities could use the 
boundaries I have calculated as part of robustness and sensitivity checks to confirm 
that their results are not due to the specific elasticities chosen. More generally, stud-
ies relying on aggregate elasticities as part of calibration or imputations of produc-
tivity would be advised to consider the range of values estimated here to ensure they 
are not basing their findings on extreme values.
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