I said in my last post that transitional growth is slow, and therefore changing potential GDP - as many of the recent Cato Growth proposals would do - could not add much to the growth rate of GDP in the near term.
There were several questions that came up in the comments, so let me try to be more clear about distinguishing between influences of trend growth and short-run shocks. Output in period ${t+1}$ is
$$ y_{t+1} = (1+g)y_t + (1+g)\lambda (y^{\ast}_t - y_t) $$
where the first term on the right is the normal trend growth rate, and the second term is the additional transitional growth that occurs because the economy is not at potential GDP, ${y^{\ast}_t}$.
We need to distinguish between changes in potential GDP and changes in current GDP. Let's take the above equation, plug in ${\lambda=0.02}$, and then use it to iterate forward from period 0 (today) until some arbitrary period ${t}$. You get
$$ y_t = (1+g)^t \left[(1-0.98^t)y^{\ast}_0 + 0.98^t y_0 \right]. $$
In period ${t}$, GDP will have grown by a factor of ${(1+g)^t}$ due to trend growth in GDP. The term in the brackets shows the cumulative effect of having ${y_0 \neq y^{\ast}_0}$ in the initial period. The 0.98 terms are just ${1-.02}$, and capture the changing role of this transitional growth over time. Note that as ${t}$ goes up, ${0.98^t}$ goes to zero and the effect of initial GDP ${y_0}$ falls to nothing. As ${t}$ gets big, the economy reaches potential GDP.
Now let's assume that period 0 is 2014. Potential GDP is 17 trillion and actual GDP is 16 trillion, and the trend growth rate is 2%. Let's consider two alternative policies to enact today that take effect in 2015.
For Policy A, GDP in 2015 (period 1) is
$$ y_1 = (1.02)^1\left[(1-0.98)\times 17 + 0.98 \times 17 \right] = 17.34. $$
The growth rate of GDP from 2014 to 2015 is ${(17.34 - 16)/16 = 0.084}$ or about 8.4%. That's a massive GDP growth rate for a developed economy like the US. But it is a one-time shock to the growth rate. From 2015 to 2016, and from 2016-2017, and every year thereafter, the growth rate will be exactly 2% because the economy is precisely back on trend. Policy A gives a one-year gigantic boost to the growth rate.
What about Policy B? GDP in 2015 here is
$$ y_1 = (1.02)^1\left[(1-0.98)\times 18 + 0.98 \times 16 \right] = 16.36. $$
This is nearly 1 trillion less than Policy A. The growth rate of GDP from 2014 to 2015 is ${(16.36 - 16)/16 = 0.023}$. As the prior post noted, reforms that raise potential GDP don't have big effects on growth rates. But while the effect on growth is small, it is persistent. From 2015-2016, the growth rate of GDP will be roughly...0.023. It's actually minutely smaller than from 2014-2015, but rounding makes them look the same. It will take a few years before the growth rate declines appreciably. Fifty years from now the growth rate will still be almost 0.021. Changing potential GDP, like with Policy B, is like turning an oil tanker with a tug boat. It doesn't go fast, but it goes on for a long time.
So is Policy B worse than Policy A? It depends entirely on your time preferences. In 2015 GDP under Policy A is nearly 1 trillion dollars higher than with policy B. But 100 years from now, GDP will be nearly 1 trillion dollars higher with Policy B. We can actually figure out how soon it will be before Policy B passes Policy A. Set
$$ (1.02)^t \left[(1-0.98^t)17 + 0.98^t 17 \right] = (1.02)^t \left[(1-0.98^t)18 + 0.98^t 16 \right] $$
and solve for ${t}$. This turns out to be roughly 34 years from now, in 2048. It takes a long, long, time for changes in potential GDP to really pay off. If you want to increase the level of GDP in the near term, and hence raise near-term growth rates by implication, then you have to, you know, boost GDP. GDP is a measure of current spending, so raising GDP means raising current spending. There isn't a trick to get around this.
Now, could I be underselling Policy B as a near-term boost to growth rates and GDP? Let's consider a few possibilities:
I'm all for policy reforms that raise potential GDP, and several of those proposed in the Cato forum would probably do that. We might want to undertake several of them at once to counteract the drags on potential GDP that Robert Gordon has outlined.
But we can't be fooled into thinking that any of them would make a really appreciable difference to economic growth today. You can revolutionize education, or corporate taxation, or urban planning, or immigration all you want, but the gains those changes induce will take decades to manifest themselves.